

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Disco Documentation


Background



	What is Disco?




	Technical Overview

	FAQ




	Release notes




	Glossary

	Screenshots








Getting started



	Get Disco

	Setting up Disco




	Installing Disco System-Wide




	Tutorial




	Extended Tutorial




	Troubleshooting Disco installation




	Get Involved











Disco In Depth



	Administering Disco




	Pushing Chunked Data to DDFS

	Contributing to Disco

	Data Flow in MapReduce Disco Jobs




	Disco Distributed Filesystem




	DiscoDB Tutorial




	The Job Pack




	Out-of-band results

	Pipeline Data Flow in Disco Jobs




	Style Guide for Disco Code




	The Disco Worker Protocol











Reference



	disco – API Reference
	disco.core – Disco Core Library

	disco.ddfs – Client interface for Disco Distributed Filesystem

	disco.error – Errors with special meaning in Disco

	disco.job – Disco Jobs

	disco.schemes – Default input streams for URL schemes

	disco.settings – Disco Settings

	disco.task – Disco Tasks

	disco.util – Helper functions

	disco.worker – Python Worker Interface

	disco.worker.modutil – Parse and find module dependencies




	disco.worker.task_io – I/O Utility functions for Disco tasks

	disco.worker.classic – Classic Disco Worker Interface




	disco.worker.pipeline – Pipeline Disco Worker Interface








	disco – Disco command line utility




	ddfs – DDFS command line utility











          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
What is Disco?

Disco is an implementation of mapreduce for distributed computing.
Disco supports parallel computations over large data sets,
stored on an unreliable cluster of computers,
as in the original framework created by Google.
This makes it a perfect tool for analyzing and processing large data sets,
without having to worry about difficult technicalities related to distribution
such as communication protocols, load balancing,
locking, job scheduling, and fault tolerance,
which are handled by Disco.

Disco can be used for a variety data mining tasks:
large-scale analytics,
building probabilistic models, and
full-text indexing the Web,
just to name a few examples.


Batteries included

The Disco core is written in Erlang [http://www.erlang.org],
a functional language that is designed for building robust fault-tolerant
distributed applications.
Users of Disco typically write jobs in Python,
which makes it possible to express even complex algorithms with very little code.

For instance, the following fully working example computes word
frequencies in a large text:

from disco.core import Job, result_iterator

def map(line, params):
    for word in line.split():
        yield word, 1

def reduce(iter, params):
    from disco.util import kvgroup
    for word, counts in kvgroup(sorted(iter)):
        yield word, sum(counts)

if __name__ == '__main__':
    job = Job().run(input=["http://discoproject.org/media/text/chekhov.txt"],
                    map=map,
                    reduce=reduce)
    for word, count in result_iterator(job.wait(show=True)):
        print(word, count)





Disco is designed to integrate easily in larger applications, such as
Web services, so that computationally demanding tasks can be delegated
to a cluster independently from the core application. Disco provides an
extremely compact Python API – typically only two functions are needed –
as well as a REST-style Web API for job control and a easy-to-use Web
interface for status monitoring.

Disco also exposes a simple worker protocol, allowing jobs to be
written in any language that implements the protocol.




Distributed computing made easy

Disco is a good match for a cluster of commodity Linux servers. New
nodes can be added to the system on the fly, by a single click on
the Web interface. If a server crashes, active jobs are automatically
re-routed to other servers without any interruptions. Together with
an automatic provisioning mechanism, such as
Fully Automatic Installation [http://www.informatik.uni-koeln.de/fai/],
even a large cluster can be maintained with only a minimal amount
of manual work. As a proof of concept,
Nokia Research Center in Palo Alto [http://research.nokia.com]
maintains an 800-core cluster running Disco using this setup.




Main features


	Proven to scale to hundreds of CPUs and tens of thousands of simultaneous
tasks.

	Used to process datasets in the scale of tens of terabytes.

	Extremely simple to use: A typical tasks consists of two functions written
in Python and two calls to the Disco API.

	Tasks can be specified in any other language as well, by
implementing the Disco worker protocol.

	Input data can be in any format, even binary data such as images. The
data can be located on any source that is accesible by HTTP or it can
distributed to local disks.

	Fault-tolerant: Server crashes don’t interrupt jobs. New servers can be
added to the system on the fly.

	Flexible: In addition to the core map and reduce functions, a combiner
function, a partition function and an input reader can be provided by
the user.

	Easy to integrate to larger applications using the standard Disco module
and the Web APIs.

	Comes with a built-in distributed storage system (Disco Distributed Filesystem).









          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Technical Overview

[image: _images/disco-arch.png]
Disco is based on the master-slave architecture.



	The master receives jobs, adds them to the job queue,
and runs them in the cluster when nodes become available.

	Client programs submit jobs to the master.

	Slaves are started by the master on each node in the cluster.
They spawn and monitor all processes that run on their respective nodes.

	Workers perform job tasks.
The locations of their output results are sent to the master.

	Once files are stored in the Disco cluster,
Disco tries to maintain data locality by scheduling tasks
which use those files as input on the same nodes that the files are stored on.
Disco runs an HTTP server on each node so that data can be accessed remotely,
when a worker cannot be run on the same node that its input is located.






Users can limit the number of workers run in parallel on each node.
Thus, users can easily designate the cluster to run as many tasks
as there are available CPUs, disks, or any other number.

If high availability of the system is a concern, CPUs in the cluster can
be partitioned amongst arbitrary many Disco masters. This way several
Disco masters can co-exist, which eliminates the only single point of
failure in the system.





          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Disco FAQ


Common Questions


	I tried to install Disco but it doesn’t work. Why?

	How come ssh localhost erl doesn’t use my normal $PATH?

	How do I profile programs in Disco?

	How do I debug programs in Disco?

	Do I always have to provide a function for map and reduce?

	How many maps can I have? Does a higher number of maps lead to better performance?

	I have one big data file, how do I run maps on it in parallel?

	How do I pass the output of one map-reduce phase to another?

	How do I print messages to the Web interface from Python?

	My input files are stored in CSV / XML / XYZ format. What is the easiest to use them in Disco?

	Why not Hadoop?

	How do I use Disco on Amazon EC2?






I tried to install Disco but it doesn’t work. Why?

See Troubleshooting Disco installation.
If the problem persists,
contact Disco developers on IRC or the mailing list.




How come ssh localhost erl doesn’t use my normal $PATH?

ssh localhost erl





is different from:

ssh localhost
erl





In general, interactive shells behave differently than non-interactive ones.
For example, see the Bash Reference Manual [http://www.gnu.org/software/bash/manual/bashref.html#Interactive-Shells].




How do I profile programs in Disco?

Disco can use the
Profile module [http://docs.python.org/library/profile.html]
to profile map and reduce tasks written in Python.
Enable profiling by setting profile = True in your disco.job.Job.

Here’s a simple example:


"""
Try running this from the ``examples/faq/`` directory using:

disco run profile.ProfileJob http://example.com/data | xargs disco wait && xargs disco pstats -k cumulative
"""
from disco.job import Job

class ProfileJob(Job):
    profile = True

    @staticmethod
    def map(entry, params):
        yield entry.strip(), 1









See also

disco.core.Disco.profile_stats()
for accessing profiling results from Python.






How do I debug programs in Disco?

Set up a single node Disco cluster locally on your laptop or desktop. It makes
debugging a Disco job almost as easy as debugging any Python script.




Do I always have to provide a function for map and reduce?

No, you may specify either map or reduce or both.
Many simple tasks can be solved with a single map function, without reduce.

It is somewhat less typical to specify only the reduce function.
This case arises when you want to merge results from independent map jobs,
or you want to join several input files without going through the map phase.

See also: Data Flow in MapReduce Disco Jobs




How many maps can I have? Does a higher number of maps lead to better performance?

In theory there is no restriction. In practice, the number is of course
limited by the available disk space (for input files) and the amount of
RAM that is required by the Disco master. Disco includes a test case,
in tests/test_50k.py that starts 50,000 map tasks in parallel. You
should be able to add a few zeroes there without any trouble. If you
perform any stress tests of your own, let us know about your findings!

Each map and reduce instance is allocated exclusive access to a CPU. This
means that the number of parallel processes is limited by the number of
available CPUs. If you have 50,000 map instances but only 50 CPUs, only
50 maps are run in parallel while 49,550 instances are either waiting
in the job queue or marked as ready — assuming that no other jobs are
running in the system at the same time and your input is split to at
least 50,000 separate files.

The number of maps can never exceed the number of input files as Disco
can’t order many maps to process a single input file.
In other words, to run K maps in parallel you need at least K input files.
See Pushing Chunked Data to DDFS for more on splitting data stored in Disco Distributed Filesystem.

In general, the question about the expected speedup when increasing
parallelism is a rather complicated one and it depends heavily on the task
at hand. See Amdahl’s Law [http://en.wikipedia.org/wiki/Amdahl’s_Law]
for more information about the subject. However, unless your tasks are
so light that the execution time is dominated by the overhead caused
by Disco, you can expect to gain some speedup by adding more maps until
the number of maps equals to the number of available CPUs.




I have one big data file, how do I run maps on it in parallel?

See Pushing Chunked Data to DDFS.




How do I pass the output of one map-reduce phase to another?

Many algorithms can be implemented cleanly as a sequence of mapreduce
jobs.
Chaining jobs together is also efficient, as the job’s
results are readily distributed and stored in Disco’s internal format.

Here’s an example that runs ten jobs in a sequence, using outputs from
the previous job as the input for the next one.
The code can also be found in examples/faq/chain.py.
The job increments each value in the input by one:


from disco.job import Job
from disco.worker.task_io import chain_reader

class FirstJob(Job):
    input = ['raw://0', 'raw://0']

    @staticmethod
    def map(line, params):
        yield int(line) + 1, ""

class ChainJob(Job):
    map_reader = staticmethod(chain_reader)

    @staticmethod
    def map(key_value, params):
        yield int(key_value[0]) + 1, key_value[1]

if __name__ == "__main__":
    # Jobs cannot belong to __main__ modules.  So, import this very
    # file to access the above classes.
    import chain
    last = chain.FirstJob().run()
    for i in range(9):
        last = chain.ChainJob().run(input=last.wait())
    print(last.name)








Assuming that the input files consists of zeroes, this example will
produce a sequence of tens as the result.




How do I print messages to the Web interface from Python?

Use a normal Python print statement.


Note

This is meant for simple debugging,
if you print messages too often, Disco will throttle your worker.
The master limits the rate of messages coming from workers,
to prevent it from being overwhelmed.



Internally, Disco wraps everything written to sys.stdout
with appropriate markup for the Erlang worker process,
which it communicates with via sys.stderr.
See also The Disco Worker Protocol.




My input files are stored in CSV / XML / XYZ format. What is the easiest to use them in Disco?

See disco.worker.task_io.input_stream().

For CSV [http://en.wikipedia.org/wiki/Comma-separated_values] files
you can also have a look at
the csv module [http://docs.python.org/library/csv.html] shipped in
the Python standard library.




Why not Hadoop [http://hadoop.apache.org]?

We see that platforms for distributed computing will be of such high
importance in the future that it is crucial to have a wide variety of
different approaches which produces healthy competition and co-evolution
between the projects. In this respect, Hadoop and Disco can be seen as
complementary projects, similar to Apache [http://httpd.apache.org],
Lighttpd [http://lighttpd.net] and Nginx [http://nginx.net].

It is a matter of taste whether Erlang and Python are more suitable for
the task than Java. We feel much more productive with Python than with
Java. We also feel that Erlang is a perfect match for the Disco core
that needs to handle tens of thousands of tasks in parallel.

Thanks to Erlang, the Disco core is remarkably compact.  It is
relatively easy to understand how the core works, and start
experimenting with it or adapt it to new environments. Thanks to
Python, it is easy to add new features around the core which ensures
that Disco can respond quickly to real-world needs.




How do I use Disco on Amazon EC2?

In general, you can use the EC2 cluster as any other Disco cluster.
However, if you want to access result files from your local machine,
you need to set the DISCO_PROXY setting.
This configures the master node as a proxy,
since the computation nodes on EC2 are not directly accessible.


Hint

For instance, you could open an SSH tunnel to the master:

ssh MASTER -L 8989:localhost:8989





and set DISCO_PROXY=http://localhost:8989.









          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Release notes


Disco 0.5.4 (October 27, 2014)


New features


	A lot of new examples including ipython, page rank, and travelling salesman problem.

	Add a deployment script to get a cluster ready in Google Cloud in a couple of minutes.

	Fixes to let Disco run on OSX Yosemite.

	And a lot of bug fixes and performance improvements








Disco 0.5.3 (August 5, 2014)


New features


	There is now one event handler process for the events of each job. This
resolves one of the bottlenecks in the disco master.

	plists is added as a new disco dependency for simple parallel list operations.
The only use of this dependency at the moment is traversing the ddfs volumes
in parallel in the build_map phase of GC.

	Job coordinator minimizes the amount of per-task work to avoid
becoming a bottleneck for jobs with large number of tasks.








Disco 0.5.2 (June 24, 2014)


New features


	Ddfs can now distribute the blobs according to the amount of space available on the nodes.

	Disco now supports concurrent stages.  That means, a stage can start before
all of the tasks of the previous stages have finished.  This option can be
enabled for pipeline jobs.

	A Disco worker is available in golang <http://github.com/discoproject/goworker>.
This worker only supports map-reduce jobs at the moment.

	The scheduler dictionary can now be sent as part of the job_dict in both the
classic and the pipeline workers. The max_core option in this dictionary will
limit the number of tasks from a job that can run.

	By default, Disco is now installed in /usr instead of /usr/local.






Deprecated


	The deprecated merge_partitions option has been removed.








Disco 0.5.1 (April 16, 2014)


New features


	Disco now uses folsom for monitoring purposes.  Folsom extracts some
information from Disco and sends it to a graphite server. The folsom
(and related) applications will start only if DISCO_PROFILE is set. This is
not set by default.
By default, folsom assumes that the localhost is the graphite server.  This
can be overriden by using the GRAPHITE_HOST option.

	A docker file has been added that lets you install Disco in a Docker
container.

	A spec file has been added to make it easy to create an rpm from the a Disco
tarball.

	Disco now works with Erlang 17.






Experimental


	Disco now supports reading the job inputs from and writing the job outputs to HDFS.

	Disco now supports reading the job inputs from and writing the job outputs to Redis.






Changes


	The changes in the mochiweb fork of the Disco project has been merged into
upstream and Disco is now using the upstream.

	New options are now passed to the erlang process on the master node that will
disable scheduler compaction and spreads the schedulers as much as possible.

	Two options have been added to the ddfs chunk command to override the chunk
size and the maximum record size.

	The save_info field has been added to the jobpack. For now, this
field only contains the information needed for saving the outputs of the job
into HDFS.

	A couple of examples have been added.  Namely, the naive-bayes and an example
for reading huge xml files.  Moreover, the kclustering example has been
re-implemented using the Disco pipelines.








Disco 0.5 (February 14, 2014)

This release is dedicated to the memory of Priya Hattiangdi, Prashanth Mundkur’s wife, who has passed away a few days ago. May she rest in peace.


New features


	A new pipeline model for Disco job computation.
This model is a conservative extension of the previous pure
map-reduce model, and provides better support for certain kinds of
processing that were previously implemented using chains of
map-reduce jobs.  This model also allows us to address various
implementation issues and bugs in the previous map-reduce model.

However, there is almost complete backward-compatible support for
the previous map-reduce model, with little or no change required to
existing Disco jobs; but see below for restrictions.








Changes

The new pipeline model comes with several changes.


	The current jobpack format has changed slightly,
reflected by an incremented version in the version field.  The main
changes are in the fields of the jobdict.  Jobpacks in the
previous format are still supported; however, this support may be
eventually removed in a future release.



	The Disco worker protocol has also changed
to support the pipeline model, which is again reflected by an
incremented version field in the WORKER message.  In
particular, there are changes to the TASK, INPUT and
OUTPUT protocol messages.  There is no support for the
previous version of the protocol, hence implementations of the Disco
worker protocol will need to be updated to the current protocol
version to work with this release.  The standard Python and OCaml
implementations support the new protocol.



	The shuffle stage of the default map-reduce pipeline is now done as
an explicit pipeline stage.  When done after map, this results in a
map_shuffle stage, whereas after reduce this becomes a
reduce_shuffle stage.

In previous versions of Disco, these shuffles were performed in
implicit stages within the Disco master itself, and actually
implemented in Erlang.  The shuffles now need to be performed in the
Disco worker library code, and are implemented in both the Python
and OCaml worker libraries.



	A save_results field in the jobdict of the jobpack is now
interpreted by the Disco master.  Setting this to true tells the
Disco master to save the job results into a DDFS tag.

Previously, this functionality was implemented in the Disco worker
library, and required the library to implement DDFS client
interface.  Moving this to the master makes it easier to have this
functionality in new language implementations of the Disco worker
protocol and library.  For example, this is used in the OCaml Disco
library.



	The web UI for jobs has changed slightly in order to show the stages
of a job pipeline.



	Disco now uses lager 2.0 which can be integrated with syslog.



	Disco now works on FreeBSD 10.0.



	A continuous integration has been set up to compile the Erlang code,
and make sure it passes the dialyzer and all of the unittests.








Backwards incompatible changes


	See above discussion of the Disco worker protocol.



	Support for scheduler parameters in jobs (e.g. max_cores,
force_local, and force_remote) has been removed.  If present
in a jobpack, they will be ignored.



	Support for the use of partitions in a Disco job is now limited.
Previously, this was typically used to set the number of reduce
tasks: when set to a number N, it was guaranteed that the job would
have N reduce tasks.

In this release, the number of reduce tasks is determined
dynamically, using the user-generated labels attached to task
outputs.  Hence, it is possible for a job with partitions set to
N to have less than N reduce tasks (if, for e.g. there were fewer
than N task output labels generated by the maps).  Since output
labels in the default map-reduce pipeline are generated by the
partition function, whether this discrepancy occurs depends on the
partition function and the distribution of the inputs to it.



	Chaining the non-DDFS results of a job executed in a previous
version (pre-0.5) of Disco into a job executed with this version
(0.5) of Disco is not supported.








Bugfixes

Please see the version control for the list of bug fixes.






Disco 0.4.5 (Mar 28, 2013)


Changes


	Disco documentation is now also at ReadTheDocs [http://disco.readthedocs.org], along with documentation for
DiscoDB [http://discodb.readthedocs.org].

	Mochiweb has been updated to fix compilation issues with Erlang 16B,
which removed support for parameterized modules.

	Disco debian packages are no longer hosted on discoproject.org.
Instead, Debian/Ubuntu users are encouraged to build their own
packages for their particular Erlang/Python environment using the
make-discoproject-debian script in the source tree.  Please read
the comments in the script.






Bugfixes


	Fix ddfs xcat display output, thanks to John Emhoff.

	Fix disco jobdict command (#341).

	Clarify the documentation in several places, thanks to feedback from
Pavel Hančar, and fixes from John Emhoff.

	Fix a formatting bug in disco.util:urljoin.

	Fixed job deletion from UI when job has quotes in name, thanks to
@nvdev on Github.

	Ensure that known garbage in DDFS is deleted immediately, without
waiting for the safety timeout required for blobs and tags of
indeterminate status.








Disco 0.4.4 (Dec 5, 2012)


New features


	The Python client library should now be Python3 compatible (version
3.2 or higher).  As usual, the Python versions on the client and in
the Disco cluster should match; mixed configurations are not
supported.  Since Python3 differentiates between string and unicode
objects, Disco jobs will need to do the same.  In particular, the
default map_reader will provide bytes objects to the map
function.

	Client and master version commands have been added to the
disco command-line interface (issue #283).
Currently, the client version command only works for Disco installed
as a python egg.

	Installation support for NetBSD, thanks to Yamamoto Takashi.

	There is now a script to ease the creation of Disco debian packages,
used to create the Debian packages provided from discoproject.org [http://discoproject.org/doc/disco/start/download.html].  Note
that this script does not follow Debian packaging guidelines; use
at your own risk!

	Small efficiency and logging improvements to DDFS.






Changes


	The disco and ddfs command-line scripts are now packaged as
part of python-disco Debian package, so that they can be used on
clients.  Thanks to Daniel Graña.






Bugfixes


	disco.ddfs.DDFS.pull() should now obey DISCO_PROXY settings.
Thanks to Daniel Graña.

	Intercept Python warning messages to sys.stderr, which break the
Disco worker protocol.  They are now logged as messages.  Thanks to
Daniel Graña.

	The HTTP header handling in the Disco client library is more
case-resilient.








Disco 0.4.3 (Aug 22, 2012)


New features


	An extended Disco tutorial, thanks to Davin Potts.

	More documentation on using the proxy mode, and recovering from a
master failure.

	More efficient (faster and using less memory) event_server, which
should speed up UI responses for large jobs.

	Better fault-tolerance in re-replication, which should speed up
node-removal.  Node-removal of more than one node is now better
tested and supported.

	Less unnecessary creation of garbage tags in DDFS, by avoiding
creating new tag incarnations when their content has not changed.
Since less garbage is created, GC will now complete more quickly.

	A “local-cluster” mode for DDFS, that simulates a multi-node DDFS
cluster on a single machine.  This is purely a developer feature for
the purpose of improving DDFS testing, and cannot be used for
running Disco jobs using DDFS.  Thanks to Harry Nakos.






Changes


	Change the default partition function to use the key hash directly,
instead of the string version of the key; this should address some
unicode failures (#265).  Thanks to quasiben and tmielika.

	Improved logging, especially to track re-replication progress.

	Major cleanup of Erlang codebase.






Bugfixes


	More fixes to DISCO_PROXY mode (#269).  This mode is required for
using DDFS in the “local cluster” mode.

	Fix a race when the UI tried to access information for a job that
had been submitted but not yet unpacked (#304).








Disco 0.4.2 (Apr 26, 2012)


New features


	New fault-tolerant garbage collector and re-replicator (GC/RR).

	Allow scheduling of nodes for safe removal from DDFS (#201).

	Some useful GC statistics are now shown in the UI.






Changes


	Discodb and Discodex separated out into submodule repositories.

	Master/Erlang build switched to rebar, with source tree re-organized
appropriately.

	Master logging switched to lager.  Note that the format of the logs
has changed as a result.

	Many dialyzer-related cleanups.  Thanks to Kostis Sagonas.

	Cleanup of debian package build.






Bugfixes


	The new GC/RR closes #254, where a concurrent update to a tag was
not handled at some points during GC.

	The new GC/RR also closes #256, where lost tag updates for
re-replicated blobs caused later re-replication failures.

	Fix a case when the master node could run out of file descriptors
when servicing an unexpectedly large number of jobpack requests from
worker nodes (20d8fbe, 10a33b9, 0f7eaeb).

	Fixes to make DISCO_PROXY usable again (#269).  Thanks to Dmitrijs
Milajevs.

	Fix a crash due to an already started lock server (64096a3).

	Handle an existing disco user on package install (4f04e14).  Thanks
to Pedro Larroy.

	Fix a crash of ddfs_master due to timeouts in linked processes (#312).








Disco 0.4.1 (Sep 23rd 2011)

The official Disco repository is now at http://github.com/discoproject/disco


New features


	DiscoDB: ddb_cursor_count() added. iterator.count() is now faster.

	DiscoDB: Value lists are now stored in deltalists instead of lists during
discodb construction, resulting to 50-75% smaller memory footprint in the
many-values-per-key case.






Bugfixes


	Fix GC timeout issue (#268).

	Fix regression in Temp GC (09a1debb). Thanks to Jamie Brandon.

	Improved and fixed documentation. Thanks to Jens Rantil, stillinbeta and Luke Hoersten.

	Fix chunking. Thanks to Daniel Grana.

	Minor fixes in DiscoDB.

	Fix a bug in job pack extraction (e7b3b6).








Disco 0.4 (May 4th 2011)


New features


	The Disco Worker Protocol introduced to support custom workers,
especially in languages besides Python
(see ODisco [https://github.com/pmundkur/odisco]
for an OCaml worker now included in contrib).

	Complete overhaul of the Python disco.worker to support the new protocol.
Most notably the worker is now completely self-contained - you do not have to
install Python libraries on slave nodes anymore.

	Job History makes using the command-line less tedious.
Several other enhancements to disco and ddfs
command line tools.

	Setting up Disco is easier than ever.
Updated Debian packaging and dependencies make Installing Disco System-Wide a breeze.

	More documentation, including a DiscoDB Tutorial
using extended disco.job.Job classes.

	Throttling of messages coming from the worker,
to prevent them from overwhelming the master without killing the process.

	Upgraded to mochiweb [https://github.com/mochi/mochiweb] 2.0.

	Support for log rotation on the master via DISCO_ROTATE_LOG.

	prefix is now optional for jobs.

	Many Dialyzer-related improvements.

	Separate Debian branch containing rules to create Debian packages merged under pkg.

	Debian package for DiscoDB.

	disco.worker.classic.external - Classic Disco External Interface provides the task type on the command line, to allow a single
binary to handle both map and reduce phases.






Bugfixes


	
	DDFS:

	
	important Recreating a previously deleted tag with a
token did not work correctly. The call returned without an error but the tag
was not created.

	Under some circumstances DDFS garbage collector deleted .partial files,
causing PUT operations to fail (6deef33f).









	Redundant inputs using the http:// scheme were not handled correctly (disco:// scheme worked ok) (9fcc740d).



	Fix eaddrinuse errors caused by already running nodes (1eed58d08).



	Fix newlines in error messages in the web UI.



	The web UI no longer loses the filter when the events are refreshed.



	Several fixes in node_mon. It should handle unavailable nodes now more robustly.



	The OOB issue (#227) highlighted below became a non-issue as GC takes care of removing OOB results when the job is garbage collected.



	Fix the issue with the job starting even when the client got an error when submitting a new job.








Deprecated


	disco.util.data_err(), disco.util.err(), and disco.util.msg(),
have all been deprecated in favor of using raise and print statements.

	Jobs without inputs i.e. generator maps: See the raw:// protocol in disco.core.Disco.new_job().

	map_init and reduce_init deprecated. Use input_stream or reader instead.

	scheme_dfs removed.

	Deprecated DDFS_ROOT setting, use DDFS_DATA instead.








Disco 0.3.2 (Dec 6th 2010)


Note

In contrast to earlier releases, in 0.3.2 purging a job does not delete
OOB results of the job automatically. This is listed as issue #227 and will
be fixed in the next release together with other changes in OOB handling.
Meanwhile, you can use disco.ddfs.DDFS.delete() to delete OOB
results if needed.




New features



	Built-in support for chunking large inputs (see Tutorial and disco.ddfs.DDFS.chunk()).



	List of blacklisted nodes is persistent over restarts.



	Disconnected nodes are now highlighted in the web UI.



	Explicit hostname (tag://host/tag) is now allowed in tag urls.



	
	Some commonly used functions added to disco.func:

	
	disco.func.gzip_line_reader()

	disco.func.sum_combiner()

	disco.func.sum_reduce()









	Job owner shown in the web UI (can be overridden with the DISCO_JOB_OWNER setting).



	DISCO_WORKER_MAX_MEM setting can be used to limit the maximum amount of memory that can be used by a worker process.



	
	Disco Distributed Filesystem:

	
	Tags can now contain arbitrary user-defined attributes (see DDFS APIs and disco.ddfs.DDFS.setattr() and disco.ddfs.DDFS.getattr()).

	Basic token-based permission control for tags (see DDFS APIs).

	Improved REST API (see DDFS APIs).

	DDFS_PARANOID_DELETE setting allows an external program to be used to delete or verify obsolete files (see disco.settings).









	Functions are now allowed in arguments of partial job functions [http://docs.python.org/library/functools.html#functools.partial].



	Improved documentation, and a new document Administering Disco.











Bugfixes



	Several bugfixes in DDFS garbage collection.

	Tasks may be marked successful before results are persisted to disk (#208).

	Improved error handling for badly dying tasks (#162).

	Allow dots in DDFS paths (#196).

	Improved handling of out of memory conditions (#168, #200).

	Fix blocking net_adm:names in node_mon (#216).

	Fix a badmatch error on unknown jobname (#81).

	Fixed error handling if sort fails.

	Tutorial example fixed.

	HTTP error message made more informative.











Disco 0.3.1 (Sep 1st 2010)


Note

This release fixes a serious bug in how partition files are handled under
certain error conditions. The bug has existed since Disco 0.1.

If a node becomes unavailable, for instance due to network congestion, master restarts
the tasks that were running on the failed node on other nodes. However, it is possible
that old tasks continue running on the failed node, producing results as usual.
This can lead to duplicate entries being written to result files.

Note that not all task failures are suspectible to this bug. If the task
itself fails, which is the most typical error scenario, Disco ensures that results are
still valid. Only if your job events have contained messages like Node unavailable
or Connection lost to the node, it is possible that results are invalid and you
should re-run the suspected jobs with Disco 0.3.1 or newer.

This bug also revealed a similar issue with jobs that save their results to
DDFS with save=True (available since Disco 0.3). It is possible that
duplicate tasks create duplicate entries in the result tag. This is easy to
detect and fix afterwards by listing urls in the tag and ensuring that there
are no duplicates. A script is provided at util/fix-jobtag that can be
used to check and fix suspected tags.




New features



	
	Improved robustness and scalability:

	
	Jobs are now immortal by default; they should never fail due to temporary errors unless a user-defined limit is reached.

	New shuffle phase to optimize intermediate results for reduce.

	Support for Varnish [http://varnish-cache.org/] for DISCO_PROXY. In some cases, Varnish can be over three times faster than Lighttpd [http://lighttpd.net/].









	
	Disco Distributed Filesystem:

	
	Improved blob placement policy.

	Atomic set updates (update=1).

	Delayed commits (delayed=1), which gives a major performance boost without sacrificing data consistency.

	Garbage collection is now scheme-agnostic (#189).









	
	Major DiscoDB enhancements:

	
	Values are now compressed without sacrificing performance.

	Constructor accepts unsorted key-value pairs.

	Option (unique_items=True) to remove duplicates from inputs automatically.

	unique_values() iterator.









	Alternative signature for reduce: Reduce can now yield key-value pairs (or return an iterator) instead of calling out.add() (see disco.func.reduce2()).



	Enhanced Java support added as a Git submodule under contrib/java-ext
(Thanks to Ryan Maus [http://github.com/ryan-maus/disco-java-ext]).



	Disk space monitoring for DDFS added to the Web UI.



	Lots of enhancements to disco command line.



	New setting DISCO_SORT_BUFFER_SIZE to control memory usage of the external sort (see disco.settings).



	disco.func.gzip_reader() for reading gzipped inputs.



	Easier single-node installation with default localhost configuration.











Deprecated



	Important! The default reader function, disco.func.map_line_reader(), will be deprecated. The new default
is to iterate over the object returned by map_reader. In practice, the default
map_reader will still return an object that iterates over lines. However,
it will not strip newline characters from the end of lines as the old disco.func.map_line_reader() does.

Make sure that your jobs that rely on the default map_reader will
handle newline characters correctly. You can do this easily by calling
string.strip() for each line.











Backwards incompatible changes



	Installation script for Amazon EC2 removed (aws/setup-instances.py) and documentation updated accordingly (see How do I use Disco on Amazon EC2?). Disco still works in Amazon EC2 and other similar environments flawlessly but a more modern mechanism for easy deployments is needed.









Bugfixes



	Critical bug fixes to fix partition file handling and save=True behavior under temporary node failures (see a separate note above).

	Delayed commits in DDFS fix OOB slowness (#155)

	Fix unicode handling (#185, #190)

	In-memory sort disabled as it doesn’t work well compressed inputs (#145)

	Fixed/improved replica handling (#170, #178, #176)

	Three bugfixes in DiscoDB querying and iterators (#181)

	Don’t rate limit internal messages, to prevent bursts of messages crashing the job (#169)

	Random bytes in a message should not make json encoding fail (#161)

	disco.core.Disco.wait() should not throw an exception if master doesn’t respond immediately (#183)

	Connections should not fail immediately if creating a connection fails (#179)

	Fixed an upload issue in comm_pycurl.py (#156)

	Disable HTTP keep-alive on master.

	Sort failing is not a fatal error.

	Partitioned only-reduce did not check the number of input partitions correctly.

	DISCO_PROXY did not work correctly if disco was run with a non-standard port.

	node_mon didn’t handle all messages from nodes correctly, which lead its message queue to grow, leading to spurious Node unavailable messages.

	Fix mouse-over for showing active cores in the status page.











Disco 0.3 (May 26th 2010)


New features



	Disco Distributed Filesystem - distributed and replicated data storage for Disco.

	Discodex - distributed indices for efficient querying of data.

	DiscoDB - lightning fast and scalable mapping data structure.

	New internal data format, supporting compression and pickling
of Python objects by default.

	Clarified the partitioning logic in Disco, see Data Flow in MapReduce Disco Jobs.

	Integrated web server (Mochiweb) replaces Lighttpd, making installation
easier and allows more fine-grained data flow control.

	Chunked data transfer and improved handling of network congestion.

	Support for partial job functions [http://docs.python.org/library/functools.html#functools.partial] (Thanks to Jarno Seppänen)

	Unified interface for readers and input streams, writers deprecated. See disco.core.Disco.new_job().

	New save=True parameter for disco.core.Disco.new_job() which
persists job results in DDFS.

	New garbage collector deletes job data DISCO_GC_AFTER seconds
after the job has finished (see disco.settings). Defaults to 100
years. Use save=True, if you want to keep the results permanently.

	Support for Out-of-band (OOB) results implemented using DDFS.

	disco-worker checks that there is enough disk space before it starts up.

	discocli - Command line interface for Disco

	ddfscli - Command line interface for DDFS

	Improved load balancing in scheduler.

	Integrated Disco proxy based on Lighttpd.

	Debian packaging: disco-master and disco-node do not conflict
anymore, making it possible to run Disco locally from Debian packages.









Deprecated


	These features will be removed in the coming releases:

	
	object_reader and object_writer - Disco supports now pickling by
default.

	map_writer and reduce_writer (use output streams instead).

	nr_reduces (use partitions)

	fun_map and input_files (use map and input)










Backwards incompatible changes



	Experimental support for GlusterFS removed

	homedisco removed - use a local Disco instead

	Deprecated chunked parameter removed from disco.core.Disco.new_job().

	If you have been using a custom output stream with the default writer,
you need to specify the writer now explictly, or upgrade your
output stream to support the .out(k, v)` method which replaces
writers in 0.3.









Bugfixes



	Jobs should disappear from list immediately after deleted (bug #43)

	Running jobs with empty input gives “Jobs status dead” (bug #92)

	Full disk may crash a job in _safe_fileop() (bug #120)

	Eventmonitor shows each job multiple times when tracking multiple jobs (bug #94)

	Change eventmonitor default output handle to sys.stderr (bug #83)

	Tell user what the spawn command was if the task fails right away (bug #113)

	Normalize pathnames on PYTHONPATH (bug #134)

	Timeouts were handled incorrectly in wait() (bug #96)

	Cast unicode urls to strings in comm_curl (bug #52)

	External sort handles objects in values correctly. Thanks to Tomaž Šolc for the patch!

	Scheduler didn’t handle node changes correctly - this solves the hanging jobs issue

	Several bug fixes in comm_*.py

	Duplicate nodes on the node config table crashed master

	Handle timeout correctly in fair_scheduler_job (if system is under heavy load)











Disco 0.2.4 (February 8th 2010)


New features



	New fair job scheduler which replaces the old FIFO queue. The scheduler is
inspired by Hadoop’s Fair Scheduler [http://hadoop.apache.org/common/docs/r0.20.1/fair_scheduler.html].
Running multiple jobs in parallel is now supported properly.

	Scheduler option to control data locality and resource usage. See disco.core.Disco.new_job().

	Support for custom input and output streams in tasks: See map_input_stream, map_output_stream,
reduce_input_stream and reduce_output_stream in disco.core.Disco.new_job().

	disco.core.Disco.blacklist() and disco.core.Disco.whitelist().

	New test framework based on Python’s unittest module.

	Improved exception handling.

	Improved IO performance thanks to larger IO buffers.

	Lots of internal changes.









Bugfixes



	Set LC_ALL=C for disco worker to ensure that external sort produces
consistent results (bug #36, 7635c9a)

	Apply rate limit to all messages on stdout / stderr. (bug #21, db76c80)

	Fixed flock error handing for OS X (b06757e4)

	Documentation fixes (bug #34, #42 9cd9b6f1)











Disco 0.2.3 (September 9th 2009)


New features



	The disco.settings control script makes setting up and running Disco much easier than
before.

	Console output of job events (screenshot). You can now follow progress of a job
on the console instead of the web UI by setting DISCO_EVENTS=1.
See disco.core.Disco.events() and disco.core.Disco.wait().

	Automatic inference and distribution of dependent modules. See disco.modutil.

	required_files parameter added to disco.core.Disco.new_job().

	Combining the previous two features, a new easier way to use external C
libraries is provided, see disco.worker.classic.external - Classic Disco External Interface.

	Support for Python 2.6 and 2.7.

	Easier installation of a simple single-server cluster. Just run disco
master start on the disco directory. The DISCO_MASTER_PORT setting is deprecated.

	Improved support for OS X. The DISCO_SLAVE_OS setting is deprecated.

	Debian packages upgraded to use Erlang 13B.

	Several improvements related to fault-tolerance of the system

	Serialize job parameters using more efficient and compact binary format.

	Improved support for GlusterFS (2.0.6 and newer).

	Support for the pre-0.1 disco module, disco.job call etc., removed.









Bugfixes



	critical External sort didn’t work correctly with non-numeric keys (5ef88ad4)

	External sort didn’t handle newlines correctly (61d6a597f)

	Regression fixed in disco.core.Disco.jobspec(); the function works now
again (e5c20bbfec4)

	Filter fixed on the web UI (bug #4, e9c265b)

	Tracebacks are now shown correctly on the web UI (bug #3, ea26802ce)

	Fixed negative number of maps on the web UI (bug #28, 5b23327 and 3e079b7)

	The comm_curl module might return an insufficient number of bytes (761c28c4a)

	Temporary node failure (noconnection) shouldn’t be a fatal error (bug #22, ad95935)

	nr_maps and nr_reduces limits were off by one (873d90a7)

	Fixed a Javascript bug on the config table (11bb933)

	Timeouts in starting a new worker shouldn’t be fatal (f8dfcb94)

	The connection pool in comm_httplib didn’t work correctly (bug #30, 5c9d7a88e9)

	Added timeouts to comm_curl to fix occasional issues with the connection
getting stuck (2f79c698)

	All IOErrors and CommExceptions are now non-fatal (f1d4a127c)











Disco 0.2.2 (July 26th 2009)


New features



	Experimental support for POSIX-compatible distributed filesystems,
in particular GlusterFS [http://gluster.com]. Two modes are available: Disco
can read input data from a distributed filesystem while preserving data locality
(aka inputfs). Disco can also use a DFS for internal communication,
replacing the need for node-specific web servers (aka resultfs).









Bugfixes



	DISCO_PROXY handles now out-of-band results correctly (commit b1c0f9911)

	make-lighttpd-proxyconf.py now ignores commented out lines in /etc/hosts (bug #14, commit a1a93045d)

	Fixed missing PID file in the disco-master script. The /etc/init.d/disco-master script in Debian packages now works correctly (commit 223c2eb01)

	Fixed a regression in Makefile. Config files were not copied to /etc/disco (bug #13, commit c058e5d6)

	Increased server.max-write-idle setting in Lighttpd config. This prevents the http connection from disconnecting with long running, cpu-intensive reduce tasks  (bug #12, commit 956617b0)











Disco 0.2.1 (May 26th 2009)


New features



	Support for redundant inputs: You can now specify many redundant addresses for an input file. Scheduler chooses the address which points at the node with the lowest load. If the address fails, other addresses are tried one by one until the task succeeds. See inputs in disco.core.Disco.new_job() for more information.

	Task profiling: See How do I profile programs in Disco?

	Implemented an efficient way to poll for results of many concurrent jobs. See disco.core.Disco.results().

	Support for the Curl [http://curl.haxx.se] HTTP client library added. Curl is used by default if the pycurl module is available.

	Improved storing of intermediate results: Results are now spread to a directory hierarchy based on the md5 checkum of the job name.









Bugfixes



	Check for ionice before using it. (commit dacbbbf785)

	required_modules didn’t handle submodules (PIL.Image etc.) correctly (commit a5b9fcd970)

	Missing file balls.png added. (bug #7, commit d5617a788)

	Missing and crashed nodes don’t cause the job to fail (bug #2, commit 6a5e7f754b)

	Default value for nr_reduces now never exceeds 100 (bug #9, commit 5b9e6924)

	Fixed homedisco regression in 0.2. (bugs #5, #10, commit caf78f77356)











Disco 0.2 (April 7th 2009)


New features



	Out-of-band results: A mechanism to produce auxiliary results in map/reduce tasks.

	Map writers, reduce readers and writers (see disco.core.Disco.new_job()): Support for custom result formats and internal protocols.

	Support for arbitrary output types.

	Custom task initialization functions: See map_init and reduce_init in disco.core.Disco.new_job().

	Jobs without inputs i.e. generator maps: See the raw:// protocol in disco.core.Disco.new_job().

	Reduces without maps for efficient join and merge operations: See Do I always have to provide a function for map and reduce?.









Bugfixes

(NB: bug IDs in 0.2 refer to the old bug tracking system)



	chunked = false mode produced incorrect input files for the reduce phase (commit db718eb6)

	Shell enabled for the disco master process (bug #7, commit 7944e4c8)

	Added warning about unknown parameters in new_job() (bug #8, commit db707e7d)

	Fix for sending invalid configuration data (bug #1, commit bea70dd4)

	Fixed missing msg, err and data_err functions (commit e99a406d)














          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Glossary


	blob

	An arbitrary file stored in Disco Distributed Filesystem.

See also Blobs.



	client

	The program which submits a job to the master.

	data locality

	Performing computation over a set of data near where the data
is located.  Disco preserves data locality whenever
possible, since transferring data over a network can be
prohibitively expensive when operating on massive amounts of
data.

See locality of reference [http://en.wikipedia.org/wiki/Locality_of_reference].



	DDFS

	See Disco Distributed Filesystem.

	Erlang

	See Erlang [http://en.wikipedia.org/wiki/Erlang_(programming_language)].

	garbage collection (GC)

	DDFS has a tag-based filesystem, which means that a given blob
could be addressed via multiple tags.  This means that blobs
can only be deleted once the last reference to it is deleted.
DDFS uses a garbage collection procedure to detect and delete
such unreferenced data.

	grouping

	A grouping operation is performed on the inputs to a
stage; each resulting group becomes the input
to a single task in that stage.  A grouping
operation is what connects two adjacent stages in a Disco
pipeline together.

The possible grouping operations that can be done are
split, group_node, group_label,
group_node_label, and group_all.



	group_all

	A grouping operation that groups all the inputs to a
stage into a single group, regardless of the labels
and nodes of the inputs.

This grouping is typically used to define reduce
stages that contain a single reduce task.



	group_label

	A grouping operation that groups all the inputs with
the same label into a single group, regardless of the
nodes the inputs reside on.  Thus, the number of tasks that
run in a group_label stage is controlled by the number
of labels generated by the tasks in the
previous stage.

This grouping is typically used to define reduce
stages that contain a reduce task for each label.



	group_node

	A grouping operation that groups all the inputs on the
same node into a single group, regardless of the labels of the
inputs.  Thus, the number of tasks that run in a
group_node stage depends on the number of distinct
cluster nodes on which the tasks in the previous stage (who
actually generated output) actually executed.

This grouping can be used to condense the intermediate data
generated on a cluster node by the tasks in a stage, in order
to reduce the potential network resources used to transfer
this data across the cluster to the tasks in the subsequent
stage.

This grouping is typically used to define shuffle
stages.



	group_node_label

	A grouping operation that groups all the inputs with
the same label on the same node into a single group.

This grouping can be used to condense the intermediate data
generated on a cluster node by the tasks in a stage, in order
to reduce the potential network resources used to transfer
this data across the cluster to the tasks in the subsequent
stage.

This grouping is typically used to define shuffle
stages.



	split

	A grouping operation that groups each single input
into its own group, regardless of its label or the node it
resides on.  Thus, the number of tasks that run in a
split stage is equal to the number of inputs to that
stage.

This grouping is typically used to define map stages.



	immutable

	See immutable object [http://en.wikipedia.org/wiki/Immutable_object].

	job

	A set of map and/or reduce tasks, coordinated
by the Disco master.  When the master receives a
disco.job.JobPack, it assigns a unique name for the
job, and assigns the tasks to workers until
they are all completed.

See also disco.job



	job functions

	Job functions are the functions that the user can specify for a
disco.worker.classic.worker.
For example,
disco.worker.classic.func.map(),
disco.worker.classic.func.reduce(),
disco.worker.classic.func.combiner(), and
disco.worker.classic.func.partition() are job functions.

	job dict

	The first field in a job pack, which contains
parameters needed by the master for job execution.

See also The Job Dict and disco.job.JobPack.jobdict.



	job home

	The working directory in which a worker is executed.
The master creates the job home from a job
pack, by unzipping the contents of its jobhome field.

See also The Job Home and disco.job.JobPack.jobhome.



	job pack

	The packed contents sent to the master when submitting a new
job.  Includes the job dict and job home,
among other things.

See also The Job Pack and disco.job.JobPack.



	JSON

	JavaScript Object Notation.

See Introducing JSON [http://www.json.org].



	label

	Each output file created by a task is annotated with
an integer label chosen by the task.  This label is used by
grouping operations in the pipeline.

	map

	The first phase of a conventional mapreduce
job, in which tasks are usually
scheduled on the same node where their input data is hosted,
so that local computation can be performed.

Also refers to an individual task in this phase, which
produces records that may be partitioned, and reduced.  Generally
there is one map task per input.



	mapreduce

	A paradigm and associated framework for distributed computing,
which decouples application code from the core challenges of
fault tolerance and data locality.  The framework handles
these issues so that jobs can focus on what is
specific to their application.

See MapReduce [http://en.wikipedia.org/wiki/MapReduce].



	master

	Distributed core that takes care of managing jobs, garbage collection for DDFS, and other central
processes.

See also Technical Overview.



	partitioning

	The process of dividing output records into a set of labeled
bins, much like tags in DDFS.
Typically, the output of map is partitioned, and each
reduce operates on a single partition.

	pid

	A process identifier.  In Disco this usually refers to the
worker pid.

See process identifier [http://en.wikipedia.org/wiki/Process_identifier].



	pipeline

	The structure of a Disco job as a linear
sequence of stages.

	reduce

	The last phase of a conventional mapreduce
job, in which non-local computation is usually
performed.

Also refers to an individual task in this phase, which
usually has access to all values for a given key produced by
the map phase.  Grouping data for reduce is achieved
via partitioning.



	replica

	Multiple copies (or replicas) of blobs are stored on different
cluster nodes so that blobs are still available inspite of a
small number of nodes going down.

	re-replication

	When a node goes down, the system tries to create additional
replicas to replace copies that were lost at the loss of the
node.

	SSH

	Network protocol used by Erlang to start slaves.

See SSH [http://en.wikipedia.org/wiki/Secure_Shell].



	shuffle

	The implicit middle phase of a conventional mapreduce
job, in which a single logical input for a
reduce task is created for each label from all
the inputs with that label generated by the tasks in a
map stage.

This phase typically creates intensive network activity
between the cluster nodes.  This load on the network can be
reduced in a Disco pipeline by judicious use
of node-local grouping operations, by condensing the
intermediate data generated on a node before it gets
transmitted across the network.



	slave

	The process started by the Erlang slave module [http://www.erlang.org/doc/man/slave.html].

See also Technical Overview.



	stage

	A stage consists of a task definition, and a grouping
operation.  The grouping operation is performed on the inputs
of a stage; each resulting input group becomes the input to a
single task.

	stdin

	The standard input file descriptor.  The master
responds to the worker over stdin.

See standard streams [http://en.wikipedia.org/wiki/Standard_streams].



	stdout

	The standard output file descriptor.  Initially redirected to
stderr for a Disco worker.

See standard streams [http://en.wikipedia.org/wiki/Standard_streams].



	stderr

	The standard error file descriptor.  The worker sends
messages to the master over stderr.

See standard streams [http://en.wikipedia.org/wiki/Standard_streams].



	tag

	A labeled collection of data in DDFS.

See also Tags.



	task

	A task is essentially a unit of work, provided to a
worker.

See also disco.task.



	worker

	A worker is responsible for carrying out a task.  A
Disco job specifies the executable that is the worker.
Workers are scheduled to run on the nodes, close to the data
they are supposed to be processing.


See also

The Python Worker module, and
The Disco Worker Protocol.





	ZIP

	Archive/compression format, used e.g. for the job
home.

See ZIP [http://en.wikipedia.org/wiki/ZIP_(file_format)].









          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Screenshots

Main screen

[image: _images/disco-main-small.png]
Job status page

[image: _images/disco-job-small.png]
Console output of job events

[image: _images/disco-events-small.png]




          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Get Disco

The Disco source code is available at github [http://github.com/discoproject/disco].  To get the latest
development branch:

git clone git://github.com/discoproject/disco.git





For released versions, check out the appropriate release tag from the
repository.

If compiling from source, you cannot use the zip or tar.gz packages
generated by github, but must instead get the git repo using the above
command.





          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Setting up Disco

This document helps you to install Disco from source,
either on a single server or a cluster of servers.
This requires installation of some Prerequisites.


See also

Installing Disco System-Wide.




Background

You should have a quick look at Technical Overview before setting up the system,
to get an idea what should go where and why.
To make a long story short, Disco works as follows:



	Disco users start Disco jobs in Python scripts.

	Jobs requests are sent over HTTP to the master.

	Master is an Erlang process that receives requests over HTTP.

	Master launches slaves on each node over SSH.

	Slaves run Disco tasks in worker processes.









Prerequisites

You need at least one Linux/Unix server.
Any distribution should work (including Mac OS X).

On each server the following are required:



	SSH daemon and client [http://www.openssh.com]

	Erlang/OTP R14A or newer [http://www.erlang.org]

	Python 2.6.6 or newer, or Python 3.2 or newer [http://www.python.org]






The same version of Erlang and Python should be installed on all
servers.  The default version of Python on the clients from which
Disco jobs are submitted should also match that on the servers.

Optionally, DISCO_PROXY needs one of



	Lighttpd 1.4.17 or newer [http://lighttpd.net]

	Varnish 2.1.3 or newer [http://varnish-cache.org]






Due to issues with unicode in Python2’s httplib library, we recommend
installing the pycurl package.  Disco will transparently use pycurl
when available.




Install Disco


Short Version

git clone git://github.com/discoproject/disco.git $DISCO_HOME
cd $DISCO_HOME
make
cd lib && python setup.py install --user && cd ..
bin/disco nodaemon






Hint

Its convenient to add the disco command to your path.






Long Version

Download a recent version of Disco.

Extract the package (if necessary) and cd into it.
We will refer to this directory as DISCO_HOME.

Now compile Disco:

make





This is often the easiest and the least intrusive way to get started with Disco.

You should repeat the above command on all machines in your Disco cluster.  You
can also install disco systemwide:

make install





Install the python libraries for the local user:

cd lib
python setup.py install --user
cd ..





Or you can install these libraries in your favorite place.


Note

Disco must be located at the same path on all the nodes.



To start the master and enter its Erlang shell,
without redirecting the log to a file, run:

bin/disco nodaemon





To start the master as a daemon and log to a file, use:

bin/disco start






Hint

If Disco has started up properly,
you should be able to see its processes running:

ps aux | grep beam.*disco





If you don’t see any Disco processes,
you may want to try Troubleshooting Disco installation.








Configure Authentication

Next we need to enable passwordless login via ssh to all servers in
the Disco cluster. If you have only one machine, you need to enable
passwordless login to localhost for the Disco user.

Run the following command as the Disco user, assuming that it doesn’t
have valid ssh-keys already:

ssh-keygen -N '' -f ~/.ssh/id_dsa





If you have one server (or shared home directories), say:

cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys





Otherwise, repeat the following command for all the servers nodeX
in the cluster:

ssh-copy-id nodeX





Now try to login to all servers in the cluster or localhost, if you
have only one machine. You should not need to give a password nor answer
to any questions after the first login attempt.

As the last step, if you run Disco on many machines, you need to make
sure that all servers in the Disco cluster use the same Erlang cookie [http://www.erlang.org/doc/getting_started/conc_prog.html#id2264467],
which is used for authentication between Erlang nodes. Run the following
command as the Disco user on the master server:

scp ~/.erlang.cookie nodeX:





Repeat the command for all the servers nodeX.


Warning

The Erlang cookie must be readable only to the disco user.
If it isn’t, run chmod 400 ~/.erlang.cookie on all the nodes.






Add nodes to Disco

At this point you should have Disco up and running.
The final step, before testing the system,
is to specify which servers are available for Disco.
This is done via Disco’s web interface.

Point your browser at http://<DISCO_MASTER_HOST>:<DISCO_PORT>,
where DISCO_MASTER_HOST and DISCO_PORT should be
replaced with their actual values.
Normally you can use http://localhost:8989,
if you run Disco locally or through an SSH tunnel.

You should see the Disco main screen (see a screenshot).
Click configure on the right side of the page.
On the configuration page, click add row to add a new set of available nodes.
Click the cells on the new empty row, and add hostname of an available server
(or a range of hostnames) in the left cell,
and the number of available cores (CPUs) on that server in the right cell.
Once you have entered a value, click the cell again to save it.


Warning

Keep in mind that for more than one node, hostnames need to resolve globally
(e.g. you should be relying on DNS to resolve hostnames,
not /etc/hosts on an individual machine).

Hostnames used by Disco are shortnames, and not fully qualified
hostnames.  DNS must be configured to correctly resolve the
shortnames of the hostnames in the cluster.

Disco cannot currently use raw IP addresses for hostnames.  Short
DNS hostnames must be used to name cluster nodes.

A relatively common mistake is that master is just an alias for the loopback address,
such as localhost, provided in /etc/hosts on the master machine.
In such cases, some nodes may not be able to resolve the master properly:
they may all resolve to themselves (if they all have the same hosts file),
nothing at all, or different machines (if they are configured differently).



You can add as many rows as needed to fully specify your cluster,
which may have varying number of cores on different nodes.
Click save table when you are done.


Add the localhost

If you have only a single machine, the resulting table should look like
this, assuming that you have two cores available for Disco:

[image: ../_images/config-localhost.png]

Warning

It is not advised to use the master as a slave node
in a serious Disco cluster.






Add multiple nodes in the same line

You can also specify multiple nodes on a single line,
if the nodes are named with a common prefix, as here:

[image: ../_images/config-cluster.png]
This table specifies that there are 30 nodes available in the cluster, from
nx01 to nx30 and each node has 8 cores.






Test the System

Now Disco should be ready for use.

We can use the following simple Disco script that computes word
frequencies in a text file [http://discoproject.org/media/text/chekhov.txt]
to see that the system works correctly.

from disco.core import Job, result_iterator

def map(line, params):
    for word in line.split():
        yield word, 1

def reduce(iter, params):
    from disco.util import kvgroup
    for word, counts in kvgroup(sorted(iter)):
        yield word, sum(counts)

if __name__ == '__main__':
    job = Job().run(input=["http://discoproject.org/media/text/chekhov.txt"],
                    map=map,
                    reduce=reduce)
    for word, count in result_iterator(job.wait(show=True)):
        print(word, count)





Run the script as follows from DISCO_HOME:

python examples/util/count_words.py





Disco attempts to use the current hostname as DISCO_MASTER_HOST,
if it is not defined in any settings file.

If you are runing Disco on multiple machines you must use the same version of
Python for running Disco scripts as you use on the server side.

You can run the script on any machine that can access the master.
The safest bet is to test the script on the master node itself.

If the machine where you run the script can access the master node but
not other nodes in the cluster, you need to set DISCO_PROXY.
The proxy address should be the same as the master’s above.
This makes Disco fetch results through the master node,
instead of connecting to the nodes directly.

If the script produces some results, congratulations, you have a
working Disco setup!
If you are new to Disco, you might want to read the Tutorial next.

If the script fails, see the section about Troubleshooting Disco installation.







          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Installing Disco System-Wide


Install From Source

Note: On FreeBSD, replace all of the instances of make with gmake.

Assuming you have already gotten Disco running out of the source directory,
as described in Install Disco,
to install system-wide, just run make install as root:

make install





This will build and install the Disco master to your system
(see the Makefile for exact directory locations).
You can specify DESTDIR and prefix,
in compliance with GNU make [http://www.gnu.org/software/make/manual/make.html].

On systems that are intended to function as Disco worker nodes only,
you can use the make install-node target instead.




System Settings

make install installs a configuration file to /etc/disco/settings.py
that is tuned for clusters, not a single machine.

By default,
the settings assume that you have at least three nodes in your cluster,
so DDFS can use three-way replication.
If you have fewer nodes,
you need to lower the number of replicas in /etc/disco/settings.py:

DDFS_TAG_MIN_REPLICAS=1
DDFS_TAG_REPLICAS=1
DDFS_BLOB_REPLICAS=1





Most likely you do not need to modify anything else in this file right now,
but you can change the settings here,
if the defaults are not suitable for your system.

See disco.settings for more information.




Creating a disco user

You can use any account for running Disco,
however it may be convenient to create a separate disco user.
Among other advantages,
this allows setting resource utilization limits for the disco user
(through limits.conf or similar mechanism).

Since Disco places no special requirements on the user,
(except access to certain ports and the ability to execute and read its files),
simply follow the guidelines of your system when it comes to creating new users.




Keeping Disco Running

You can easily integrate disco
into your system’s startup sequence.
As an example, you can see how disco-master.init
is implemented in Disco’s debian packaging.




Configuring DDFS Storage

On the Disco nodes, DDFS creates by default a subdirectory named
vol0 under the DDFS_DATA directory to use for storage.
If you have one or more dedicated disks or storage areas you wish to
use instead, you can mount them under the directory specified by
DDFS_DATA as subdirectories named vol0, vol1 and so
on.







          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Tutorial

This tutorial shows how to create and run a Disco job that counts words.
To start with, you need nothing but a single text file.
Let’s call the file bigfile.txt.
If you don’t happen to have a suitable file on hand,
you can download one from here [http://discoproject.org/media/text/bigfile.txt].


1. Prepare input data

Disco can distribute computation only as well as data can be distributed.
In general, we can push data to Disco Distributed Filesystem,
which will take care of distributing and replicating it.


Note

Prior to Disco 0.3.2, this was done by splitting data manually,
and then using ddfs push to push user-defined blobs.
As of Disco 0.3.2, you can use ddfs chunk
to automatically chunk and push size-limited chunks to DDFS.
See Pushing Chunked Data to DDFS.



Lets chunk and push the data to a tag data:bigtxt:

ddfs chunk data:bigtxt ./bigfile.txt





We should have seen some output telling us that the chunk(s) have been created.
We can also check where they are located:

ddfs blobs data:bigtxt





and make sure they contain what you think they do:

ddfs xcat data:bigtxt | less






Note

Chunks are stored in Disco’s internal compressed format,
thus we use ddfs xcat instead of ddfs cat to view them.
ddfs xcat applies some input_stream()
(by default, chain_reader()),
whereas ddfs cat just dumps the raw bytes contained in the blobs.



If you used the file provided above,
you should have only ended up with a single chunk.
This is because the default chunk size is 64MB (compressed),
and the bigfile.txt is only 12MB (uncompressed).
You can try with a larger file to see that chunks are created as needed.


Hint

If you have unchunked data stored in DDFS that you would like to chunk,
you can run a Disco job, to parallelize the chunking operation.
Disco includes an example [https://github.com/discoproject/disco/blob/master/examples/util/chunk.py] of how to do this,
which should work unmodified for most use cases.






2. Write job functions

Next we need to write map and reduce functions to count words.
Start your favorite text editor and create a file called count_words.py.
First, let’s write our map function:

def fun_map(line, params):
        for word in line.split():
                yield word, 1





Quite compact, eh?
The map function takes two parameters, here they are called line and params.
The first parameter contains an input entry, which is by default a line of text.
An input entry can be anything though,
since you can define a custom function that parses an input stream
(see the parameter map_reader in the
Classic Worker).
The second parameter, params, can be any object that you specify,
in case that you need some additional input for your functions.

For our example, we can happily process input line by line.
The map function needs to return an iterator over of key-value pairs.
Here we split a line into tokens using the builtin string.split().
Each token is output separately as a key, together with the value 1.

Now, let’s write the corresponding reduce function:

def fun_reduce(iter, params):
        from disco.util import kvgroup
        for word, counts in kvgroup(sorted(iter)):
                yield word, sum(counts)





The first parameter, iter,
is an iterator over those keys and values produced by the map function,
which belong to this reduce instance (see partitioning).

In this case, words are randomly assigned to different reduce instances.
Again, this is something that can be changed
(see partition() for more information).
However, as long as all occurrences of the same word go to the same reduce,
we can be sure that the final counts are correct.

The second parameter params is the same as in the map function.

We simply use disco.util.kvgroup() to pull out each word along with its counts,
and sum the counts together, yielding the result.
That’s it.
Now we have written map and reduce functions for counting words in parallel.




3. Run the job

Now the only thing missing is a command for running the job.
There’s a large number of parameters that you can use to specify your job,
but only three of them are required for a simple job like ours.

In addition to starting the job, we want to print out the results as well.
First, however, we have to wait until the job has finished.
This is done with the wait() call,
which returns results of the job once has it has finished.
For convenience, the wait() method,
as well as other methods related to a job,
can be called through the Job object.

A function called result_iterator() takes
a list of addresses to the result files, that is returned by
wait(),
and iterates through all key-value pairs in the results.

The following example from examples/util/count_words.py runs the job,
and prints out the results:


from disco.core import Job, result_iterator

def map(line, params):
    for word in line.split():
        yield word, 1

def reduce(iter, params):
    from disco.util import kvgroup
    for word, counts in kvgroup(sorted(iter)):
        yield word, sum(counts)

if __name__ == '__main__':
    job = Job().run(input=["http://discoproject.org/media/text/chekhov.txt"],
                    map=map,
                    reduce=reduce)
    for word, count in result_iterator(job.wait(show=True)):
        print(word, count)









Note

This example could also be written by extending disco.job.Job.
See, for example, examples/util/wordcount.py.



Now comes the moment of truth.

Run the script as follows:

python count_words.py





If everything goes well, you will see that the job executes.
The inputs are read from the tag data:bigtxt, which was created earlier.
Finally the output is printed.
While the job is running, you can point your web
browser at http://localhost:8989 (or some other port where you run the
Disco master) which lets you follow the progress of your job in real-time.

You can also set DISCO_EVENTS to see job events from your console:

DISCO_EVENTS=1 python count_words.py





In this case, the events were anyway printed to the console,
since we specified show=True.




What next?

As you saw, creating a new Disco job is pretty straightforward.
You could extend this simple example in any number of ways.
For instance, by using the params object to include a list of stop words.

You could continue on with Extended Tutorial which is intended as a
follow-on tutorial to this one.

If you pushed the data to Disco Distributed Filesystem,
you could try changing the input to tag://data:bigtxt,
and add map_reader = disco.worker.task_io.chain_reader.

You could follow the DiscoDB Tutorial,
to learn more about using discodb with Disco.

You could try using sum_combiner(),
to make the job more efficient.

You can also experiment with custom partitioning and reader functions.
They are written in the same way as map and reduce functions.
Just see some examples in the disco.worker.classic.func module.
After that, you could try chaining jobs together,
so that output of the previous job becomes input for the next one.

The best way to learn is to pick a problem or algorithm that you know
well, and implement it with Disco. After all, Disco was designed to
be as simple as possible so you can concentrate on your own problems,
not on the framework.







          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Extended Tutorial

This tutorial expands on the introductory Tutorial to expose the
user to Disco’s exported classes while solidifying the concepts of feeding
input into and capturing output from Disco jobs.  As a working example,
this tutorial walks the user through implementing one approach for
performing an inner_join [http://en.wikipedia.org/wiki/Join_%28SQL%29#Inner_join] operation on arbitrarily large datasets.

As a prerequisite, the reader is expected to
have successfully completed the introductory Tutorial on a
functional (happily configured and working) installation of Disco.


1. Background and sample input

Let’s first prepare a sample input data set that’s small enough and simple
enough for us to follow and know what to expect on output.  We will prepare
two sets of input in csv format to be “joined” together using the first
entry in each row as the key to match (join) on.  Create a file named
set_A.csv containing the following text:

1,"alpha"
2,"beta"
3,"gamma"
4,"delta"
5,"epsilon"





Create a second file named set_B.csv containing the following text:

1,"who"
2,"what"
3,"where"
4,"when"
5,"why"
6,"how"





When we inner_join [http://en.wikipedia.org/wiki/Join_%28SQL%29#Inner_join] these two datasets using the first entry in each row as
its key, we would like to see output that looks something like this:

1,"alpha","who"
2,"beta","what"
3,"gamma","where"
4,"delta","when"
5,"epsilon","why"





Note that there is no line in the output for key=6 as seen in the input data
of set_B.csv because it did not have a matched pair for that key in
set_A.csv.  Please also note that we would expect the output to be the
same even if the order of the lines were scrambled in either of the two
input data sets.


Note

If you’re a big data fanatic and can’t wait to get to a
macho volume of input, be patient.  Let’s make sure we get
everything working right and we understand what’s happening with
small data first before turning up the volume.



You should now have two files in your working directory named set_A.csv
and set_B.csv which contain 5 and 6 lines, respectively, of text data.




2. Split input data into chunks

In the introductory Tutorial, we made use of a DDFS (Disco Distributed Filesystem)
command, ddfs chunk, to split input data into chunks and copy it onto
DDFS.  To provide a more concrete sense of how to chunk input data, let’s
instead split our input data before we push it to DDFS.  When we do push
our already-split data to DDFS, we will tell DDFS to treat the distinct
chunks as one.

As alluded to before, there are many strategies for performing efficient
join operations inside MapReduce frameworks.  Here we will take the approach
of combining our two input data sets (A and B) into a single input stream.
With a single input stream, it’s easier to see how to split up the input,
do work on it, then merge it back together.  This approach doesn’t
necessarily harm performance but there are different strategies tuned for
optimal performance depending upon the nature of your data.  (Search the
net for “mapreduce join” to see the wealth of competing strategies out
there.)

Assuming a unix-like environment from here on, start by combining our two
input files:

% cat set_A.csv set_B.csv > both_sets.csv





Next, we want to split our both_sets.csv file into chunks with 2 lines
each.  You can do this with a text editor yourself, by hand, or we can
make use of the convenient unix utility split to do the job for us:

% split -l 2 both_sets.csv





Running split as above should create 6 files named xaa through
xaf.  You can quickly verify this by performing a count of the lines
in each file and seeing that it adds up to 11:

% wc -l xa?
  2 xaa
  2 xab
  2 xac
  2 xad
  2 xae
  1 xaf
 11 total





Now that we’ve split the input data ourselves into 6 chunks, let’s push
our split data into DDFS and label it all with a single tag,
data:both_sets, so that we can refer to all our chunks as one:

% ddfs push data:both_sets ./xa?





You can verify that all 11 lines made it into DDFS and are accessible via
that single tag by asking to cat it back to the screen:

% ddfs cat data:both_sets





By splitting our input data into 6 chunks, we are now set up to perform
6 executions of our map function (which we have yet to implement).  If
you have a processor with 6 cores, you could conceivably perform all 6
map operations in parallel at the same time.  If you have more than 6 cores
either on one processor or across multiple processors available to Disco,
you’ll only be able to make use of, at most, 6 of them at one time during
the map phase of a MapReduce job.  In general:  If you want more map
operations to be running at the same time, make more chunks (smaller chunks).
Taking it too far, if you make more chunks than you have cores, you won’t
get further speedup from parallelism.

You should now have the 11 lines of input csv-format data stored in DDFS
in 6 chunks under the tag data:both_sets.  While not necessarily the
best approach for splitting and importing your largest datasets into DDFS,
it may prove helpful to remember that you can chunk your data all at once
or bring it in in pieces.

You can also set a limit for the size of the chunks to increase the number of
the chunks for a fixed size file.  The default maximum chunk size is 64 MB.  You can
use:

% ddfs chunk -S 0.1 data:other_sets ./both_sets.csv





This will result in each chunk being smaller than 0.1 * 1MB.  For this small
file, only one chunk will be created.




3. Write a job using a derived class

In the introductory Tutorial, we defined a map function and a
reduce function, and then supplied them as parameters to Job().run().
But there’s more fun to be had by deriving a new class from
Job.  Let’s start by declaring our new class and saving
it in a source file named simple_innerjoin.py:

class CsvInnerJoiner(Job):
    def map(self, row, params):
        # TODO
        pass

    def reduce(self, rows_iter, out, params):
        # TODO
        pass





Before we turn attention to implementing either of the map or
reduce methods, we should consider our need, in this example, to
read input that’s in csv format.  A convenient solution is to implement
map_reader() in our class:

@staticmethod
def map_reader(fd, size, url, params):
    reader = csv.reader(fd, delimiter=',')
    for row in reader:
        yield row





This will allow us to implement map() to operate on one row’s worth
of input data at a time without needing to worry about raw input format.

Our strategy with our map and reduce methods will be to
first sort all of the input data by their unique keys (which will put
row 4 from set_A.csv right next to / in front of row 4 from
set_B.csv), then merge consecutive rows having the same unique key.
This puts most of the burden on our reduce() implementation, but
we’ll ease that a bit in a later pass.  Since map() does not need
to do much other than serve as a pass-through (quickly), modify our
placeholder for map() to read:

def map(self, row, params):
    yield row[0], row[1:]





This will separate the unique key (in position 0) from all the other
data on a row (assuming we want to re-use this for something more
interesting than our fairly trivial input data set so far).

Now we ask reduce() to do the real work in its updated definition:

def reduce(self, rows_iter, out, params):
    from disco.util import kvgroup
    from itertools import chain
    for url_key, descriptors in kvgroup(sorted(rows_iter)):
        merged_descriptors = list(chain.from_iterable(descriptors))
        if len(merged_descriptors) > 1:
            out.add(url_key, merged_descriptors)





Again, as in Tutorial, we are using disco.util.kvgroup()
to group together consecutive rows in our sorted input and hand them
back as a group (iterable).  Note our test to see if we have a matched pair
or not is somewhat fragile and may not work for more general cases – we
highlight this as an area for improvement for the reader to consider
later.

Let’s round out our simple_innerjoin.py tool by making it easy to
supply names for input and output, while also making our output come out
in csv format – adding to the bottom of simple_innerjoin.py:

if __name__ == '__main__':
    input_filename = "input.csv"
    output_filename = "output.csv"
    if len(sys.argv) > 1:
        input_filename = sys.argv[1]
        if len(sys.argv) > 2:
            output_filename = sys.argv[2]

    from simple_innerjoin import CsvInnerJoiner
    job = CsvInnerJoiner().run(input=[input_filename])

    with open(output_filename, 'w') as fp:
        writer = csv.writer(fp)
        for url_key, descriptors in result_iterator(job.wait(show=True)):
            writer.writerow([url_key] + descriptors)






Note

Notice the important nuance in our importing the CsvInnerJoiner class
from our own source file.  Ordinarily, if this script were run
independently, we would not expect to need to import a class that’s being
defined in the same source file.  Because Disco pickle [http://docs.python.org/library/pickle.html]‘s this source file
(using its own dPickle) for the sake of distributing it to worker
nodes, upon unpickling the definition of CsvInnerJoiner will no longer
be visible in the local context.  Try running with the “from ...” line
commented out to see the resulting complaint from the Unpickler run by
the workers.  If anything, we should take this as a gentle reminder to be
cognizant that we are preparing code to run in a distributed, parallel
system and that we occasionally need to make some small adjustments for
that environment.



In the prior Tutorial, all output flowed to the screen (stdout) but
here we capture the output flowing from our job into a file in csv format.
We chose to use the csv format throughout this Extended Tutorial for
convenience but clearly other methods of redirecting output and formatting
it to your own needs are possible in the same way.




4. Results and exploring partitions

We should now be set up to run our job with 6 input chunks corresponding
to 6 invocations of our map() method and the output of those map runs
will flow into 1 invocation of our reduce() method to then produce our
final csv result file.  Launching from the command-line:

% python simple_innerjoin.py data:both_sets output.csv





At this point, please check that the output found in the file output.csv
matches what was expected.  (Pedants can play further with formatting and
quotation rules via the csv module, to taste.)  If you instead encounter
errors, please double-check that your file faithfully matches the code
outlined thus far and please double-check that you can still run the
example from the introductory Tutorial.

Thus far we’ve been running parallel invocations of map() but not of
reduce() – let’s change that by requesting that the output from the
map phase be divided into 2 partitions.  Add the following line to the
very top of our definition of the CsvInnerJoiner class, to look
something like this:

class CsvInnerJoiner(Job):
    partitions = 2

    ...*truncated*...





Run the job again from the command-line and this time you may find that
while the output might be correct, the output is no longer in sort-order.
This is because we did not sort over all rows – only the rows handed to a
particular invocation of reduce() were sorted, though we still get to
see the output from parallel invocations of reduce() concatenated
together in our single output csv file.

This helps highlight a problem we’re going to have once we start throwing
larger volumes of data at this Disco job:  invoking sorted() requires
a potentially large amount of memory.  Thankfully Disco provides, as part
of its framework, an easier solution to this common need for working with
sorted results in the reduce step.  At the top of our definition of the
CsvInnerJoiner class, let’s add the following line:

class CsvInnerJoiner(Job):
    partitions = 2
    sort = True

    ...*truncated*...





Simultaneously, we can remove the use of sorted() from the one line
in our implementation of reduce() so that it now reads as:

def reduce(self, rows_iter, out, params):
    from disco.util import kvgroup
    from itertools import chain
    for url_key, descriptors in kvgroup(rows_iter):
        merged_descriptors = list(chain.from_iterable(descriptors))
        if len(merged_descriptors) > 1:
            out.add(url_key, merged_descriptors)





Now the work of sorting the results flowing from the mappers is done for
us by the framework and that sort is performed across all mappers’ results
before being partitioned and handed as input to the reducers.




5. Big(ger) Data

Let’s quickly generate a bigger input data set with which to work.  The
following one-liner can be modified to generate as little or as much sample
data as you have patience / disk space to hold – modify the 1000000 near
the end of the line to create as many rows of data as you like:

% python -c "import csv, sys, random; w = csv.writer(sys.stdout);
[w.writerow([i, int(999999*random.random())]) for i in range(1000000)]" > input1.csv





Run it twice (saving the first run’s output in a different name from the
second run’s) to give yourself two sets of input data just as before.
Then follow the steps from either this Extended Tutorial or the prior
introductory Tutorial to chunk the input data and push it to DDFS
in whatever manner you like.  (Let’s assume you tag your chunked input
data as data:bigger_sets in DDFS.)

The only modification to simple_innerjoin.py that we suggest,
depending upon how large your newly generated input data set is, is to
increase the number of partitions to ratchet up the number of parallel
runs of reduce().  Then go ahead and run your job in the same way:

% python simple_innerjoin.py data:bigger_sets bigger_output.csv





By monitoring the processes on the system(s) where you’ve configured
Disco, you will hopefully be able to observe individual workers performing
their map tasks and reduce tasks, the framework doing your sorting work
for you in between, and how much cpu processing time is being used versus
time spent waiting on disk or other resources.  Having a larger dataset
with a longer runtime makes observing these things much easier.

Note that you may quickly find your disk access speed to become a
bottleneck and for this reason and others you should consider playing with
the number of partitions as well as the number of input chunks (how many
reducers and mappers, respectively) to find your system’s optimal
throughput for this job.

As a variation on the above, remember that our simple_innerjoin.py
script has the capability to read its input data from a local file instead
of DDFS – try running again with a local file supplied as the location of
the input (instead of data:bigger_sets).  Did you get an error message
with “Invalid tag (403)”?  If so, you need to ensure Disco recognizes that
you are supplying a filename and not the name of a tag.  Did you get an
error message with “IOError: [Errno 2] No such file or directory”?  If so,
you either need to supply the full path to the file (not a relative path
name) or that path may not be available to Disco everywhere (if so, a good
reason to use DDFS again).  Was your run faster or slower than using DDFS?

After playing with ever larger volumes of data and tweaking the controls
that Disco provides, you’ll quickly gain confidence in being able to throw
any size job at Disco and knowing how to go about implementing a solution.




simple_innerjoin.py listing

Complete source all in one place:


from disco.core import Job, result_iterator
import csv, sys


class CsvInnerJoiner(Job):
    partitions = 2
    sort = True

    def map(self, row, params):
        yield row[0], row[1:]

    @staticmethod
    def map_reader(fd, size, url, params):
        reader = csv.reader(fd, delimiter=',')
        for row in reader:
            yield row

    def reduce(self, rows_iter, out, params):
        from disco.util import kvgroup
        from itertools import chain
        #for url_key, descriptors in kvgroup(sorted(rows_iter)):
        for url_key, descriptors in kvgroup(rows_iter):
            merged_descriptors = list(chain.from_iterable(descriptors))
            if len(merged_descriptors) > 1:
                out.add(url_key, merged_descriptors)


if __name__ == '__main__':
    input_filename = "input.csv"
    output_filename = "output.csv"
    if len(sys.argv) > 1:
        input_filename = sys.argv[1]
        if len(sys.argv) > 2:
            output_filename = sys.argv[2]

    from simple_innerjoin import CsvInnerJoiner
    job = CsvInnerJoiner().run(input=[input_filename])

    with open(output_filename, 'w') as fp:
        writer = csv.writer(fp)
        for url_key, descriptors in result_iterator(job.wait(show=True)):
            writer.writerow([url_key] + descriptors)











What next?

A natural next step in experimenting with partitioning involves
chaining jobs together since the number of partitioned
outputs from one job becomes the number of chunked inputs for the next.
As a baby step, you could move the reduce() method implemented above
into a second, chained job and replace it in the first job with a
do-nothing substitute like disco.worker.classic.func.nop_reduce().

As already mentioned in the introductory Tutorial,
the best way to learn is to pick a problem or algorithm that you know
well, and implement it with Disco. After all, Disco was designed to
be as simple as possible so you can concentrate on your own problems,
not on the framework.







          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Troubleshooting Disco installation

Setting up Disco should tell you enough to get Disco up and running,
but it may happen that Disco doesn’t work properly right after installation.
If you can’t run the word count example successfully,
the reason is usually a small misconfigured detail somewhere.
This document tries to help you figure out what’s going wrong.

Since Disco is a distributed system based on loosely coupled components,
it is possible to debug the system by testing the components one by one.
This document describes the troubleshooting process.
It is intended to help you to get Disco working locally, on a single computer.
After you have done this, distributing it should be rather straightforward:
the same debugging techniques apply.


Note

It’s assumed that you have already followed the steps
in Install Disco.



First, ensure the following:


	The version of Erlang is the same throughout the cluster.

	The version of Disco is the same throughout the cluster, and
installed in the same location.

	The ‘python’ executable or symbolic link points to the same version
of Python across the cluster, and on the clients from which Disco
jobs are submitted.




Make sure Disco is not running

If you have started Disco earlier,
try to stop the master using disco stop
(or C-c if you are running with disco nodaemon).
If you cannot seem to stop Disco this way, kill the beam processes by hand,


Hint

You can use:

ps aux | grep beam.*disco





and:

kill PID





to hunt down and kill the pids, respectively.






Is the master starting?

Start Disco by saying:

disco nodaemon





If everything goes well,
you should see a bunch of =INFO REPORT= messages printed to the screen.
If you see any =ERROR REPORT= messages, something is wrong,
and you should try to resolve the particular issue Erlang is reporting.
These messages often reveal what went wrong during the startup.

If you see something like this:

application: disco
exited: {bad_return,{{disco_main,start,[normal,[]]},
        {'EXIT',["Specify ",scgi_port]}}}





Disco is trying to start up properly,
but your Erlang installation probably doesn’t work
correctly and you should try to re-install it.


Note

If you started disco using disco start,
you will have to check the logs in DISCO_LOG_DIR
for such messages.

If you can’t find the log file, the master didn’t start at all.
See if you can find master binaries in the ebin directory
under DISCO_MASTER_HOME.
If there are no files there,
check for compilation errors when you Install Disco.




Hint

If you don’t know what DISCO_LOG_DIR is
(or any other setting),
you can check with:

disco -v







If the master is running, you can proceed to the next step
(you can double check with ps as in Make sure Disco is not running).
If not, the master didn’t start up properly.




Are there any nodes on the status page?

Now that we know that the master process is running,
we should be able to configure the system.
Open your web browser and go to
http://localhost:8989/
(or whatever your DISCO_MASTER_HOST
and DISCO_PORT are set to).
The Disco status page should open.

Do you see any boxes with black title bars on the status page
(like in this screenshot)?
If not, add nodes to the system as instructed in Add nodes to Disco.

If adding nodes through the web interface fails,
you can try editing the config file manually.
For instance,
if you replace DISCO_ROOT in the following command,
it will create a configuration file with one node:

echo '[["localhost", "1"]]' > DISCO_ROOT/disco_4441.config






Hint

Remember to restart the master after editing the config file by hand.




Note

Note that as of version 0.3.1 of Disco, jobs can be submitted to
Disco even if there are no nodes configured.  Disco assumes that
this configuration is a temporary state, and some nodes will be
added.  In the meantime, Disco retains the jobs, and will start or
resume them once nodes are added to the configuration and become
available.



Now is a good time to try to run a Disco job.
Go ahead and retry the installation test.
You should see the job appear on the Disco status page.
If the job succeeds, it should appear with a green box on the job list.
If it turns up red, we need to continue debugging.




Are slaves running?

In addition to the master process on the master node,
Erlang runs a slave on each node in a Disco cluster.

Make sure that the slave is running:

ps aux | grep -o disco.*slave@





If is is running, you should see something like this:

disco_8989_master@discodev -sname disco_8989_slave@
disco.*slave@





If you get a similar output, go to Do workers run?. If not, read on.


Is SSH working?

The most common reason for the slave not starting up is a problem with SSH.
Try the following command:

ssh localhost erl





If SSH asks for a password, or any other confirmation,
you need to configure SSH properly as instructed in
authentication configuration.

If SSH seems to work correctly, Erlang should be able to start a slave.
Check that you get something similar when you do:

[user@somehost dir]$ disco debug
Erlang VERSION

Eshell VERSION (abort with ^G)
(testmaster@somehost)1> slave:start(localhost, "testnode").
{ok,testnode@localhost}
(testmaster@somehost)1> net_adm:ping(testnode@localhost).
pong





If Erlang doesn’t return {ok,_Node} for the first expression,
or if it returns pang for the second expression,
there’s probably something wrong either with your
authentication configuration.


Note

Node names need to be consistent.
If your master node is called huey and your remote node dewey,
dewey must be able to connect to the master node named huey,
and vice versa.
Aliasing is not allowed.








Is your firewall configured correctly?

Disco requires a number of ports to be accessible to function properly.


	22 - SSH

	8990 - DDFS web API

	8989 - Disco web interface/API. Must be unblocked on slaves and the master.

	4369 - Erlang port mapper

	30000 to 65535 - Communication between Erlang slaves




Note

Future versions of Disco may allow you to specify a port range for Erlang to
use. However, the current version of Disco does not, so you must open up the
entire port range.






Is your DNS configured correctly?

Disco uses short DNS names of cluster nodes in its configuration.
Please ensure that short hostnames were entered in the
Add nodes to Disco step, and that DNS resolves these short names
correctly across all nodes in the cluster.




Do workers run?

The master is responsible for starting individual
processes that execute the actual map and reduce
tasks.
Assuming that the master is running correctly,
the problem might be in the worker.

See what happens with the following command:

ssh localhost "python DISCO_HOME/lib/disco/worker/classic/worker.py"





Where DISCO_HOME in this case must be the Disco source directory.
It should start and send a message like this:

WORKER 32 {"version": "1.0", "pid": 13492}





If you get something else, you may have a problem with your PATH
or Python installation.




Still no success?

If the problem persists, or you can’t get one of the steps above working,
do not despair!
Report your problem to friendly Disco developers
on IRC or the mailing list.
Please mention in your report the steps you followed and the results you got.







          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
Get Involved


Develop Disco

Get Disco from github [http://github.com/discoproject/disco].
You can easily fork a repository of your own (just click “fork”).
You can set up a development environment on a single machine or a cluster.




Mailing list / discussion groups

We have a Google group [http://groups.google.com/group/disco-dev] for Disco which serves as our mailing list.
Subscribe here [http://groups.google.com/group/disco-dev/subscribe].




IRC

Join Disco discussions at our IRC channel #discoproject at Freenode [http://freenode.net].
This is usually the fastest way to get answers to your questions and get in touch with Disco developers.

If you haven’t used IRC before, see here [http://freenode.net/using_the_network.shtml] how to get started.




Roadmap / Wiki

We are using the issues list [http://github.com/discoproject/disco/issues] as a roadmap for Disco.
You can report bugs and wishlist features for Disco there.
Also see the wiki [http://wiki.github.com/discoproject/disco/] for other miscellaneous information.







          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
disco – Disco command line utility

disco is a fully-Python startup/configuration script which supports several exciting features.
The new startup script makes it even easier to get up and running with a Disco cluster.


Note

This is the manpage for the disco command.
Please see Setting up Disco for more information on installing Disco.




Hint

The documentation assumes that the executable $DISCO_HOME/bin/disco is on your system path.
If it is not on your path, you can add it:

ln -s $DISCO_HOME/bin/disco /usr/bin





If /usr/bin is not in your $PATH, use an appropriate replacement.
Doing so allows you to simply call disco, instead of specifying the complete path.



Run disco help for information on using the command line utility.


See also

The ddfs command.

See disco.settings for information about Disco settings.




Job History

For commands which take a jobname, or which support -j,
the special arguments @ and @?<string>
are replaced by the most recent job name and
the most recent job with name matching <string>, respectively.

For example:

disco results @





Would get the results for the most recent job, and:

disco results @?WordCount





Would get the results for the last job with name containing WordCount.







          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            
  
ddfs – DDFS command line utility

ddfs is a tool for manipulating data stored in Disco Distributed Filesystem.
Some of the ddfs utilities also work with data stored in Disco’s temporary filesystem.


Note

This is the manpage for the ddfs command.
Please see Disco Distributed Filesystem for more general information on DDFS.




Hint

The documentation assumes that the executable $DISCO_HOME/bin/ddfs is on your system path.
If it is not on your path, you can add it:

ln -s $DISCO_HOME/bin/ddfs /usr/bin





If /usr/bin is not in your $PATH, use an appropriate replacement.
Doing so allows you to simply call ddfs, instead of specifying the complete path.



Run ddfs help for information on using the command line utility.


See also

The disco command.

See disco.settings for information about Disco settings.







          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            

   Python Module Index


   
   d
   


   
     			

     		
       d	

     
       	
       	
       ddfscli	
       

     
       	[image: -]
       	
       disco	
       

     
       	
       	
       disco.core	
       

     
       	
       	
       disco.ddfs	
       

     
       	
       	
       disco.error	
       

     
       	
       	
       disco.job	
       

     
       	
       	
       disco.schemes	
       

     
       	
       	
       disco.schemes.scheme_disco	
       

     
       	
       	
       disco.schemes.scheme_discodb	
       

     
       	
       	
       disco.schemes.scheme_file	
       

     
       	
       	
       disco.schemes.scheme_http	
       

     
       	
       	
       disco.schemes.scheme_raw	
       

     
       	
       	
       disco.settings	
       

     
       	
       	
       disco.task	
       

     
       	
       	
       disco.util	
       

     
       	
       	
       disco.worker	
       

     
       	
       	
       disco.worker.classic	
       

     
       	
       	
       disco.worker.classic.external	
       

     
       	
       	
       disco.worker.classic.func	
       

     
       	
       	
       disco.worker.classic.worker	
       

     
       	
       	
       disco.worker.modutil	
       

     
       	
       	
       disco.worker.pipeline	
       

     
       	
       	
       disco.worker.pipeline.worker	
       

     
       	
       	
       disco.worker.task_io	
       

     
       	
       	
       discocli	
       

   



          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

 	Disco Project 

 
        	Disco  documentation 

 
      

    


    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Z
 


A


  	
      
  	add() (disco.worker.task_io.OutputStream method)
  


  

  	
      
  	attrs() (disco.ddfs.DDFS method)
  


  





B


  	
      
  	bin (disco.worker.Worker attribute)
  


      
  	blacklist() (disco.core.Disco method)
  


  

  	
      
  	blob
  


      
  	blobs() (disco.ddfs.DDFS method)
  


  





C


  	
      
  	chain_reader() (in module disco.worker.task_io)
  


      
  	chunk() (disco.ddfs.DDFS method)
  


      
  	clean() (disco.core.Disco method)
  


      
  	client
  


  

  	
      
  	close() (disco.worker.task_io.OutputStream method)
  


      
  	combiner() (in module disco.worker.classic.func)
  


      
  	CommError
  


      
  	copy_entry (C function)
  


  





D


  	
      
  	data locality
  


      
  	DataError
  


      
  	DDFS
  


      	
        
  	(class in disco.ddfs)
  


      


      
  	DDFS_DATA, [1], [2], [3], [4]
  


      
  	DDFS_PUT_PORT
  


      
  	ddfscli (module)
  


      
  	defaults() (disco.worker.Worker method)
  


      
  	delattr() (disco.ddfs.DDFS method)
  


      
  	delete() (disco.ddfs.DDFS method)
  


      
  	die (C function)
  


      
  	Disco (class in disco.core)
  


      
  	disco (module)
  


      
  	disco.core (module)
  


      
  	disco.ddfs (module)
  


      
  	disco.error (module)
  


      
  	disco.job (module)
  


      
  	disco.schemes (module)
  


      
  	disco.schemes.scheme_disco (module)
  


      
  	disco.schemes.scheme_discodb (module)
  


      
  	disco.schemes.scheme_file (module)
  


      
  	disco.schemes.scheme_http (module)
  


      
  	disco.schemes.scheme_raw (module)
  


      
  	disco.settings (module)
  


      
  	disco.task (module)
  


      
  	disco.util (module)
  


      
  	disco.worker (module)
  


  

  	
      
  	disco.worker.classic (module)
  


      
  	disco.worker.classic.external (module)
  


      
  	disco.worker.classic.func (module)
  


      
  	disco.worker.classic.worker (module)
  


      
  	disco.worker.modutil (module)
  


      
  	disco.worker.pipeline (module)
  


      
  	disco.worker.pipeline.worker (module)
  


      
  	disco.worker.task_io (module)
  


      
  	DISCO_DATA
  


      
  	DISCO_EVENTS, [1], [2]
  


      
  	DISCO_HOME, [1], [2]
  


      
  	disco_input_stream() (in module disco.worker.task_io)
  


      
  	DISCO_JOB_OWNER
  


      
  	DISCO_LOG_DIR, [1]
  


      
  	DISCO_MASTER_HOME
  


      
  	DISCO_MASTER_HOST, [1], [2]
  


      
  	disco_output_stream() (in module disco.worker.task_io)
  


      
  	DISCO_PORT, [1], [2]
  


      
  	DISCO_PROXY, [1]
  


      
  	DISCO_ROOT
  


      
  	DISCO_ROTATE_LOG
  


      
  	discocli (module)
  


      
  	DiscoError
  


      
  	DiscoTask (class in disco.worker.pipeline.worker)
  


      
  	dumps() (disco.job.JobPack method)
  


      
  	dxmalloc (C function)
  


  





E


  	
      
  	
    environment variable
  


      	
        
  	DATA_GC_INTERVAL
  


        
  	DDFS_ABSOLUTE_SPACE
  


        
  	DDFS_BLOB_REPLICAS
  


        
  	DDFS_DATA, [1], [2], [3], [4], [5]
  


        
  	DDFS_GC_BALANCE_THRESHOLD
  


        
  	DDFS_GC_INITIAL_WAIT
  


        
  	DDFS_GET_MAX
  


        
  	DDFS_PARANOID_DELETE
  


        
  	DDFS_PUT_MAX
  


        
  	DDFS_PUT_PORT, [1]
  


        
  	DDFS_READ_TOKEN
  


        
  	DDFS_ROOT
  


        
  	DDFS_SPACE_AWARE
  


        
  	DDFS_TAG_MIN_REPLICAS
  


        
  	DDFS_TAG_REPLICAS
  


        
  	DDFS_WRITE_TOKEN
  


        
  	DISCO_DATA, [1]
  


        
  	DISCO_DEBUG
  


        
  	DISCO_ERLANG
  


        
  	DISCO_EVENTS, [1], [2], [3]
  


        
  	DISCO_FLAGS
  


        
  	DISCO_GC_AFTER
  


        
  	DISCO_HOME, [1], [2], [3]
  


        
  	DISCO_HTTPD
  


        
  	DISCO_JOB_OWNER, [1]
  


        
  	DISCO_LOG_DIR, [1], [2]
  


        
  	DISCO_MASTER_CONFIG
  


        
  	DISCO_MASTER_HOME, [1]
  


        
  	DISCO_MASTER_HOST, [1], [2], [3]
  


        
  	DISCO_MASTER_ROOT
  


        
  	DISCO_NAME
  


        
  	DISCO_PID_DIR
  


        
  	DISCO_PORT, [1], [2], [3]
  


        
  	DISCO_PROFILE
  


        
  	DISCO_PROXY, [1], [2]
  


        
  	DISCO_PROXY_ENABLED
  


        
  	DISCO_PROXY_PORT
  


        
  	DISCO_ROOT, [1]
  


        
  	DISCO_ROTATE_LOG, [1]
  


        
  	DISCO_SCHEDULER
  


        
  	DISCO_SCHEDULER_ALPHA
  


        
  	DISCO_TEST_DISCODB
  


        
  	DISCO_TEST_HOST
  


        
  	DISCO_TEST_PORT
  


        
  	DISCO_USER
  


        
  	DISCO_WORKER_MAX_MEM
  


        
  	DISCO_WWW_ROOT
  


        
  	GRAPHITE_HOST
  


        
  	IfDISCO_PROFILEisset,thensomeperformancedatafromDisco
  


        
  	PATH
  


        
  	SYSTEMD_ENABLED
  


        
  	Thedistanceanode'sdiskutilizationcanbefromtheaverage
  


        
  	Weareassumingthatthelisteningportisthedefaultgraphite
  


        
  	diskutilizationoftheclusterbeforethenodeisconsidered
  


        
  	port.
  


        
  	tobeover-utilizedorunder-utilized.Defaultis``0.1``.
  


        
  	willbesenttothegraphitehost.Thedefaultislocalhost.
  


      


      
  	Erlang
  


  

  	
      
  	events() (disco.core.Disco method)
  


      
  	exists() (disco.ddfs.DDFS method)
  


  





F


  	
      
  	file (disco.worker.Output attribute)
  


  

  	
      
  	find_modules() (in module disco.worker.modutil)
  


  





G


  	
      
  	garbage collection (GC)
  


      
  	get() (disco.ddfs.DDFS method)
  


      	
        
  	(disco.task.Task method)
  


        
  	(in module disco.worker.classic.worker)
  


      


      
  	getattr() (disco.ddfs.DDFS method)
  


      
  	getitem() (disco.worker.Worker method)
  


      
  	group (disco.worker.pipeline.worker.TaskInfo attribute)
  


      
  	group_all
  


  

  	
      
  	group_label
  


      
  	group_node
  


      
  	group_node_label
  


      
  	grouping
  


      
  	gzip_line_reader() (in module disco.worker.task_io)
  


      
  	gzip_reader() (in module disco.worker.task_io)
  


  





H


  	
      
  	host (disco.task.Task attribute)
  


      	
        
  	(disco.worker.pipeline.worker.TaskInfo attribute)
  


      


  





I


  	
      
  	immutable
  


      
  	init() (in module disco.worker.classic.func)
  


      
  	Input (class in disco.worker)
  


      
  	input (jobdict attribute), [1]
  


  

  	
      
  	input() (disco.worker.Worker method)
  


      
  	input_hook() (in module disco.worker.pipeline.worker)
  


      
  	input_stream() (in module disco.schemes.scheme_disco)
  


      	
        
  	(in module disco.schemes.scheme_file)
  


        
  	(in module disco.schemes.scheme_http)
  


        
  	(in module disco.schemes.scheme_raw)
  


        
  	(in module disco.worker.task_io)
  


      


      
  	InputStream (class in disco.worker.task_io)
  


  





J


  	
      
  	job
  


      
  	Job (class in disco.job)
  


      
  	job (disco.error.JobError attribute)
  


      
  	job dict
  


      
  	job functions
  


      
  	job home
  


      
  	job pack
  


      
  	jobdata (disco.job.JobPack attribute)
  


      
  	jobdata() (in module disco.task)
  


      
  	jobdict (disco.job.JobPack attribute)
  


      
  	jobdict() (disco.worker.classic.worker.Worker method)
  


      	
        
  	(disco.worker.Worker method)
  


        
  	(disco.worker.pipeline.worker.Worker method)
  


      


      
  	jobenvs (disco.job.JobPack attribute)
  


  

  	
      
  	jobenvs() (disco.worker.Worker method)
  


      
  	JobError
  


      
  	jobhome (disco.job.JobPack attribute)
  


      
  	jobhome() (disco.worker.Worker method)
  


      
  	jobinfo() (disco.core.Disco method)
  


      
  	joblist() (disco.core.Disco method)
  


      
  	jobname (disco.task.Task attribute)
  


      	
        
  	(disco.worker.pipeline.worker.TaskInfo attribute)
  


      


      
  	jobname() (in module disco.util)
  


      
  	JobPack (class in disco.job)
  


      
  	jobpack() (disco.core.Disco method)
  


      
  	jobzip() (disco.worker.Worker method)
  


      
  	JSON
  


  





K


  	
      
  	kill() (disco.core.Disco method)
  


  

  	
      
  	kvgroup() (in module disco.util)
  


  





L


  	
      
  	label
  


      	
        
  	(disco.worker.Output attribute)
  


        
  	(disco.worker.pipeline.worker.TaskInfo attribute)
  


      


      
  	list() (disco.ddfs.DDFS method)
  


  

  	
      
  	load() (disco.job.JobPack class method)
  


      
  	locate_modules() (in module disco.worker.modutil)
  


  





M


  	
      
  	main() (disco.worker.Worker class method)
  


      
  	make_range_partition() (in module disco.worker.classic.func)
  


      
  	map
  


      
  	map() (in module disco.worker.classic.func)
  


      
  	mapreduce
  


  

  	
      
  	master
  


      	
        
  	(disco.task.Task attribute)
  


      


      
  	MergedInput (class in disco.worker)
  


      
  	message (disco.error.JobError attribute)
  


      
  	mode (disco.task.Task attribute)
  


      
  	ModUtilImportError
  


  





N


  	
      
  	new_job() (disco.core.Disco method)
  


      
  	nodeinfo() (disco.core.Disco method)
  


      
  	nop_map() (in module disco.worker.classic.func)
  


  

  	
      
  	nop_reduce() (in module disco.worker.classic.func)
  


      
  	notifier() (in module disco.worker.classic.func)
  


      
  	nr_reduces (jobdict attribute)
  


  





O


  	
      
  	old_netstr_reader() (in module disco.worker.task_io)
  


      
  	oob_get() (disco.core.Disco method)
  


      
  	oob_list() (disco.core.Disco method)
  


      
  	Output (class in disco.worker)
  


      
  	output (disco.worker.pipeline.worker.DiscoTask attribute)
  


  

  	
      
  	output() (disco.worker.Worker method)
  


      
  	output_stream() (in module disco.worker.task_io)
  


      
  	OutputStream (class in disco.worker.task_io)
  


      
  	owner (jobdict attribute)
  


  





P


  	
      
  	p_entry (C type)
  


      
  	p_entry.data (C member)
  


      
  	p_entry.len (C member)
  


      
  	p_entry.sze (C member)
  


      
  	package() (in module disco.worker.classic.external)
  


      
  	ParallelInput (class in disco.worker)
  


      
  	Params (class in disco.worker)
  


      
  	parse_dir() (in module disco.util)
  


      
  	parse_function() (in module disco.worker.modutil)
  


      
  	partition() (in module disco.worker.classic.func)
  


      
  	partitioning
  


      
  	PATH
  


  

  	
      
  	path (disco.worker.Output attribute)
  


      	
        
  	(disco.worker.task_io.OutputStream attribute)
  


      


      
  	path() (disco.task.Task method)
  


      
  	pid
  


      
  	pipeline
  


      	
        
  	(jobdict attribute)
  


      


      
  	prefix (jobdict attribute)
  


      
  	profile_stats() (disco.core.Disco method)
  


      
  	proxy_functions (disco.job.Job attribute)
  


      
  	pull() (disco.ddfs.DDFS method)
  


      
  	purge() (disco.core.Disco method)
  


      
  	push() (disco.ddfs.DDFS method)
  


      
  	put() (disco.ddfs.DDFS method)
  


      	
        
  	(disco.task.Task method)
  


        
  	(in module disco.worker.classic.worker)
  


      


      
  	
    Python Enhancement Proposals
  


      	
        
  	PEP 8
  


      


  





R


  	
      
  	re-replication
  


      
  	re_reader() (in module disco.worker.task_io)
  


      
  	read() (disco.worker.task_io.InputStream method)
  


      
  	read_kv (C function)
  


      
  	read_parameters (C function)
  


      
  	reduce
  


  

  	
      
  	reduce() (in module disco.worker.classic.func)
  


      
  	reduce2() (in module disco.worker.classic.func)
  


      
  	replica
  


      
  	result_iterator() (in module disco.core)
  


      
  	results() (disco.core.Disco method)
  


      
  	run() (disco.job.Job method)
  


      	
        
  	(disco.worker.Worker method)
  


      


  





S


  	
      
  	save_results (jobdict attribute)
  


      
  	scheduler (jobdict attribute)
  


      
  	SerialInput (class in disco.worker)
  


      
  	setattr() (disco.ddfs.DDFS method)
  


      
  	shuffle
  


      
  	slave
  


      
  	split
  


      
  	SSH
  


  

  	
      
  	stage
  


      
  	Stage (class in disco.worker.pipeline.worker)
  


      
  	stage (disco.worker.pipeline.worker.TaskInfo attribute)
  


      
  	stderr
  


      
  	stdin
  


      
  	stdout
  


      
  	sum_combiner() (in module disco.worker.classic.func)
  


      
  	sum_reduce() (in module disco.worker.classic.func)
  


  





T


  	
      
  	tag
  


      
  	tag() (disco.ddfs.DDFS method)
  


      
  	task
  


      
  	Task (class in disco.task)
  


      
  	task_input_stream() (in module disco.worker.task_io)
  


      
  	task_output_stream() (in module disco.worker.task_io)
  


      
  	taskid (disco.task.Task attribute)
  


  

  	
      
  	TaskInfo (class in disco.worker.pipeline.worker)
  


      
  	this_host() (in module disco.worker.classic.worker)
  


      
  	this_inputs() (in module disco.worker.classic.worker)
  


      
  	this_master() (in module disco.worker.classic.worker)
  


      
  	this_name() (in module disco.worker.classic.worker)
  


      
  	this_partition() (in module disco.worker.classic.worker)
  


      
  	type (disco.worker.Output attribute)
  


  





U


  	
      
  	uid (disco.task.Task attribute)
  


  

  	
      
  	urls() (disco.ddfs.DDFS method)
  


  





W


  	
      
  	wait() (disco.core.Disco method)
  


      
  	walk() (disco.ddfs.DDFS method)
  


      
  	whitelist() (disco.core.Disco method)
  


      
  	worker
  


      
  	Worker (class in disco.worker)
  


      	
        
  	(class in disco.worker.classic.worker)
  


        
  	(class in disco.worker.pipeline.worker)
  


        
  	(disco.job.Job attribute)
  


      


  

  	
      
  	worker (jobdict attribute)
  


      
  	write() (disco.worker.task_io.OutputStream method)
  


      
  	write_kv (C function)
  


      
  	write_num_prefix (C function)
  


  





Z


  	
      
  	ZIP
  


  







          

      

      

    


    
         Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  _static/ajax-loader.gif





_static/down.png





_static/up.png





_static/down-pressed.png





_static/comment.png





_static/plus.png





_static/navigation.png





_static/comment-close.png





_static/contents.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


 		Disco Project »


 
        		Disco  documentation »


 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2008-2013, Nokia Corporation. 2008-2014, The Disco Project..
      Last updated on Dec 20, 2016.
      Created using Sphinx 1.3.5.
    

  

_static/minus.png





_static/up-pressed.png





_static/file.png





_static/screenshots/disco-main.png
[-XeX:)

disco status

> (@] [+

[&]http:/ /localhost:8989 /index.htm!

¢ J(a- Google

L

googley nokiav passpack disco django docs _paloaltoy datainsight bookmarks

erlang v

disco status

melnorme-01

melnorme-02

melnorme-06

melnorme-07

328 28

30

33

31

melnorme-24
LLITTTT

melnorme-25
LLITPTTT]

melnorme-26

@9

status | configure

[0 _discodex@503:4cdfa:3af3f

FiftyThousandTestCase@503:4c4|
[l _discodex@503:2db:4f2b1
[l _discodex@503:ec03:ec2fs

I ciscodex@soaieszaisdees
B _ciscodex@sos:escaisizza
I _ciscodex@soaiesssissiis
[l _discodex@s03:e526:1241¢






_static/screenshots/disco-job.png
disco job

[ «[» ][] [+ [FEnttp://localhost:8989 job. htmiZname=FiftyThousandTestCase@503:4c47f:09549

¢ J(a- Google

L

googlev nokiav passpack disco django docs paloaltov datainsight bookmarks _disco trail

erlang v

HPtilThousandTestCase@503 :4c47f:b9549

[kill job]  [delete all job data]

Job is active
started: 2010/09/01 03:40:47

Walting  Running Done  Falled
Map 35730 208 14062 9670
Redwce 300 0 o o

Current nodes

Showing the first 100 inputs 0
http://172.16.52.1:9444/
http://172.16.52.1:9444/
http://172.16.52.1:9444/
http://172.16.52.1:9444/

Filter:

2010/09/01 03:

14 melnorme-11

[map:36881] Received a new map task!

2010/09/01 03:

4 melnorme-10

@e

status | configure

[l _discodex@503:4cdfa:3af3r

FiftyThousandTestCase@503:4c4|
[l _discodex@503:2db:4f2b1

I _ciscodex@soaiesssissiis
[l _discodex@s03:e526:1241¢






_static/comment-bright.png





_static/screenshots/disco-events.png
800

Terminal — bash — 235x62 — 33

2089/09/02 1 Localhost [nap=d] Worker done
2089/09/02 1 noster  Received results fron nap:d @ localhost.
2089/09/02 1 noster  nap:2 assigned to localhost
2089/09/02 17 localhost  [nap:2] Received a new nap job!
2089/09/02 1 Localhost  [nap:2] Done: 18 entries napped in total
2089/09/02 1 Localhost [nap:2] Worker done
2089/09/02 1 noster  Received results fron nap:2 @ localhost.
2089/09/02 1 noster  nap:3 assigned to localhost
2089/09/02 1 Locathost Received a new nap job
20890902 1 Locathost ] Dane: 10 entries napped in tatal
209/09/02 17 Localhost [nap:3] Vorker done
2089/09/02 1 noster  Received results fron nap:3 @ localhost.
2089/09/02 1 noster  nap:4 assigned to localhost
2089/09/02 1 localhost  [nap:4] Received a new nap job!
209/09/02 17 Localhost  [nap:4] Done: 10 entries napped in total
2089/09/02 1 Localhost [nap:4] Worker done
20890902 1 noster  Received results fron nap:4 @ localhost.
2089/09/02 1 naster  nap:S assigned to localhost
2089/09/02 1 Locathost 5] Received a new nap job!
2089/09/02 1 Locathost Done: 18 entries napped in total
2089/09/02 1 Locathost ] Vorker done
20890902 17 noster  Received results fron nap:5 @ localhost.
2089/09/02 1 noster  nap: assigned to localhost
2089/09/02 1 Locathost Received a new nap job
2089/09/02 1 Locathost Done: 18 entries napped in total
209/09/02 17 Localhost [nap:6] Worker done
20890902 1 noster  Received results fron nap:6 @ localhost.
2089/09/02 1 noster  nap:7 assigned to localhost
2089/09/02 1 Locathost Received a new nap job
2089/09/02 1 Locathost Done: 18 entries napped in total
20890902 1 Locathost Vorker done
2089/09/02 1 noster  Received results fron nap:7 @ localhost.
2089/09/02 17 naster  nap:® assigned to localhost
20890902 1 Locathost Received a new nap job
20890902 1 Locathost Done: 18 entries napped in total
20890902 1 Locathost 5] Horker done
209/09/02 17 noster  Received results fron nap:8 @ localhost.
2089/09/02 1 noster  nap:9 assigned to localhost
2089/09/02 1 Locathost Received a new nap job
20890902 1 Locathost Done: 18 entries napped in total
2089/09/02 1 Locathost Vorker done
20890902 1 noster  Received results fron nap:9 @ localhost.
2089/09/02 1 naster  Hap phase done
20890902 17 noster  Starting reduce phase
2089/09/02 1 noster  reduce:d added to waitlist
20890902 1 noster  reduce:8 assigred to Localhost
20890902 1 localhost  [reduce:0] Received a ney reduce job
2089/09/02 17 localhost  [reduce:0] Starting reduce

i

2089/09/02 Localhost  [reduce:0] Reduce done: 180 entries reduced in total
20890902 1 Localhost ERROR [reduce:8] Worker failed. Lost words:
Traceback (uost recent call last):
File "/usr/local/src/cluster/disco/node/disco-worker”, Line 69, in sodules
nethad(n)
File "/usr/local /src/cluster/disco/node/disconsde/disco_worker py", Line 448, in op_reduce
fun_reduce(red_in, red_out, red_parans)
File */usr/lacal sre/cluster/disco/tests/test_sinple.py”, Line 19, in reduce
out .add( result’, &)
NaneError: global nae 'e' is not def ined

2089/03/02 17:10:52 master  ERROR: dob terninated due to the previous errars
2089/09/02 17:40:52 master  WARN: Job Killed
Status: [nop] @ vaiting, 8 running, 18 done, 0 failed






_images/partitioned_map_flow.png
iput  map  ouput

(O

S pastisionsm

(O






_images/group_node_label.png





_images/group_split.png





_images/partitioned_file.png
partioned
inputioutput





_images/protocol.png


_images/group_node_label_output.png
22

-






_images/ddfs-concept-2.png





